Home
Class 12
MATHS
f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(...

`f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x)))`. Then `lim_(x to oo)` f(x) is equal to

A

`(2a)/(pi)`

B

`-(2a)/(pi)`

C

`(4a)/(pi)`

D

`-(4a)/(pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit of the function \( f(x) = \frac{\ln(x^2 + e^x)}{\ln(x^4 + e^{2x})} \) as \( x \) approaches infinity, we can follow these steps: ### Step 1: Identify the form of the limit As \( x \to \infty \): - The term \( e^x \) grows much faster than \( x^2 \), so \( x^2 + e^x \) approaches \( e^x \). - Similarly, \( e^{2x} \) grows much faster than \( x^4 \), so \( x^4 + e^{2x} \) approaches \( e^{2x} \). Thus, we can rewrite the limit: \[ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\ln(e^x)}{\ln(e^{2x})} \] ### Step 2: Simplify the logarithms Using the property of logarithms \( \ln(e^a) = a \): \[ \ln(e^x) = x \quad \text{and} \quad \ln(e^{2x}) = 2x \] ### Step 3: Substitute back into the limit Now we substitute these simplifications back into the limit: \[ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x}{2x} \] ### Step 4: Simplify the expression This simplifies to: \[ \lim_{x \to \infty} \frac{x}{2x} = \lim_{x \to \infty} \frac{1}{2} = \frac{1}{2} \] ### Conclusion Thus, the limit is: \[ \lim_{x \to \infty} f(x) = \frac{1}{2} \]

To find the limit of the function \( f(x) = \frac{\ln(x^2 + e^x)}{\ln(x^4 + e^{2x})} \) as \( x \) approaches infinity, we can follow these steps: ### Step 1: Identify the form of the limit As \( x \to \infty \): - The term \( e^x \) grows much faster than \( x^2 \), so \( x^2 + e^x \) approaches \( e^x \). - Similarly, \( e^{2x} \) grows much faster than \( x^4 \), so \( x^4 + e^{2x} \) approaches \( e^{2x} \). Thus, we can rewrite the limit: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

f(x)=(1n(x^2+e^x))/(1n(x^4+e^(2x)))dotT h e n lim_(x->oo)f(x) is equal to (a) 1 (b) 1/2 (c) 2 (d) none of these

lim_(x to 2)(log(x-1))/(x-2) is equal to

Let f(x)=(log_e(x^2+e^x))/(log_e(x^4+e^2x)) . If lim_(xrarr oo) f(x)=l and lim_(xrarr-oo)f(x)=m , then

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))}, then f'((1)/( e )) is equal to

Let f (x) =lim _(nto oo) tan ^(-1) (4n ^(2) (1- cos ""(pi)/(n )))and g (x) = lim _(n to oo) (n^(2))/(2) ln cos ((2x)/(n )) then lim _(xto0) (e ^(-2g (x))-ef (x))/(x ^(6)) equals.

lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

lim_(xrarr0^(+)){ln((x^(7)+2x^(6)e+x^(5)e^(2)))-ln(x^(2)sin^(3)x)} is equal to

If f(x)=log|2x|,xne0 then f'(x) is equal to

Let f(x)=sinx,g(x)=x^(2) and h(x)=log_(e)x. If F(x)=("hog of ")(x)," then "F''(x) is equal to

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. ("lim")(xvecoo)n^2(x^(1/n)-x^(1/((n+1)))),x >0,i se q u a lto 0 (b) e...

    Text Solution

    |

  2. Let f(x)=lim(ntooo) (1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the set of...

    Text Solution

    |

  3. f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))). Then lim(x to oo) f(x) ...

    Text Solution

    |

  4. The value of lim(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n-1)-(n)/(1-2n).(...

    Text Solution

    |

  5. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/...

    Text Solution

    |

  6. lim(xto1) (xsin(x-[x]))/(x-1), where [.] denotes the greatest integer ...

    Text Solution

    |

  7. lim(xtooo) (x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

    Text Solution

    |

  8. lim(xto0) (x^(a)sin^(b)x)/(sin(x^(c))), where a,b,c inR~{0}, exists an...

    Text Solution

    |

  9. lim(x->0)(x^4(cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)) is equal to (a) 1 (...

    Text Solution

    |

  10. lim(xto1) (1-x^(2))/(sin2pix) is equal to

    Text Solution

    |

  11. lim(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

    Text Solution

    |

  12. lim(yto0) ((x+y)sec(x+y)-xsecx)/(y) is equal to

    Text Solution

    |

  13. lim(xto1) (1+sinpi((3x)/(1+x^(2))))/(1+cospix) is equal to

    Text Solution

    |

  14. ("lim")(xvecoo)sum(x=1)^(20)cos^(2n)(x-10)i se q u a lto 0 (b) 1 (...

    Text Solution

    |

  15. ("lim")(xvec1)((x^4+x^2+x+1)/(x^2-x+1))^(1-"cos"(x+1))/((x+1)^(2))i se...

    Text Solution

    |

  16. lim(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

    Text Solution

    |

  17. The value of lim(xto0) ([(100x)/(sinx)]+[(99sinx)/(x)]) (where [.] rep...

    Text Solution

    |

  18. The value of lim(xtoa) sqrt(a^(2)-x^(2))"cot"(pi)/(2)sqrt((a-x)/(a+x))...

    Text Solution

    |

  19. lim(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest...

    Text Solution

    |

  20. The value of lim(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

    Text Solution

    |