Home
Class 12
MATHS
The value of lim(ntooo) [(2n)/(2n^(2)-1)...

The value of `lim_(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n-1)-(n)/(1-2n).(n)/(n^(2)+1)]` is

A

5

B

6

C

7

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left[ \frac{2n}{2n^2 - 1} \cos\left(n + 1\right) \cdot \frac{1}{2n - 1} - \frac{n}{1 - 2n} \cdot \frac{n}{n^2 + 1} \right], \] we will break it down step by step. ### Step 1: Simplify the expression We start with the limit: \[ \lim_{n \to \infty} \left[ \frac{2n \cos(n + 1)}{(2n^2 - 1)(2n - 1)} - \frac{n^2}{(1 - 2n)(n^2 + 1)} \right]. \] ### Step 2: Analyze the first term For the first term, we can rewrite it as: \[ \frac{2n \cos(n + 1)}{(2n^2 - 1)(2n - 1)}. \] As \( n \to \infty \), \( \cos(n + 1) \) oscillates between -1 and 1. Therefore, we can focus on the denominator: \[ (2n^2 - 1)(2n - 1) \approx 4n^3 \text{ as } n \to \infty. \] Thus, the first term behaves like: \[ \frac{2n \cdot \text{bounded}}{4n^3} = \frac{\text{bounded}}{2n^2} \to 0 \text{ as } n \to \infty. \] ### Step 3: Analyze the second term Now consider the second term: \[ -\frac{n^2}{(1 - 2n)(n^2 + 1)}. \] As \( n \to \infty \), we can simplify the denominator: \[ (1 - 2n)(n^2 + 1) \approx -2n^3 \text{ as } n \to \infty. \] Thus, the second term behaves like: \[ -\frac{n^2}{-2n^3} = \frac{1}{2n} \to 0 \text{ as } n \to \infty. \] ### Step 4: Combine the results Now, we combine the results of both terms: \[ \lim_{n \to \infty} \left[ 0 - 0 \right] = 0. \] ### Final Answer Thus, the value of the limit is: \[ \boxed{0}. \]

To solve the limit \[ \lim_{n \to \infty} \left[ \frac{2n}{2n^2 - 1} \cos\left(n + 1\right) \cdot \frac{1}{2n - 1} - \frac{n}{1 - 2n} \cdot \frac{n}{n^2 + 1} \right], \] we will break it down step by step. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo)[(2n)/(2n^2-1)cos(n+1)/(2n-1)-n/(1-2n)dot(n(-1)^n)/(n^2+1)]i s 1 (b) -1 (c) 0 (d) none of these

The value of lim_(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+(n-1)^(2))] is :

lim_(n to oo)(1-2n^(2))/(5n^(2)-n+100)=

The value of lim_(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^((n-1)//n))/(n)] is

Evaluate lim_(ntooo) (1)/(1+n^(2))+(2)/(2+n^(2))+...+(n)/(n+n^(2)).

The value of lim_(nrarroo)((1)/(2n)+(1)/(2n+1)+(1)/(2n+2)+…..+(1)/(4n)) is equal to

The value of lim_(xtooo) {(1)/(3)+(2)/(21)+(3)/(91)+...+(n)/(n^4+n^2+1)} , is

The value of lim_(ntooo)[1/(n^(2)+1^(2))+2/(n^(2)+2^(2))+………….+n/(n^(2)+n^(2))] , is

Evaluate lim_(ntooo) (1)/(n^(2(log_(e)n-log_(e)(n+1)))+n) .

lim_(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. Let f(x)=lim(ntooo) (1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the set of...

    Text Solution

    |

  2. f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))). Then lim(x to oo) f(x) ...

    Text Solution

    |

  3. The value of lim(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n-1)-(n)/(1-2n).(...

    Text Solution

    |

  4. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/...

    Text Solution

    |

  5. lim(xto1) (xsin(x-[x]))/(x-1), where [.] denotes the greatest integer ...

    Text Solution

    |

  6. lim(xtooo) (x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

    Text Solution

    |

  7. lim(xto0) (x^(a)sin^(b)x)/(sin(x^(c))), where a,b,c inR~{0}, exists an...

    Text Solution

    |

  8. lim(x->0)(x^4(cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)) is equal to (a) 1 (...

    Text Solution

    |

  9. lim(xto1) (1-x^(2))/(sin2pix) is equal to

    Text Solution

    |

  10. lim(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

    Text Solution

    |

  11. lim(yto0) ((x+y)sec(x+y)-xsecx)/(y) is equal to

    Text Solution

    |

  12. lim(xto1) (1+sinpi((3x)/(1+x^(2))))/(1+cospix) is equal to

    Text Solution

    |

  13. ("lim")(xvecoo)sum(x=1)^(20)cos^(2n)(x-10)i se q u a lto 0 (b) 1 (...

    Text Solution

    |

  14. ("lim")(xvec1)((x^4+x^2+x+1)/(x^2-x+1))^(1-"cos"(x+1))/((x+1)^(2))i se...

    Text Solution

    |

  15. lim(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

    Text Solution

    |

  16. The value of lim(xto0) ([(100x)/(sinx)]+[(99sinx)/(x)]) (where [.] rep...

    Text Solution

    |

  17. The value of lim(xtoa) sqrt(a^(2)-x^(2))"cot"(pi)/(2)sqrt((a-x)/(a+x))...

    Text Solution

    |

  18. lim(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest...

    Text Solution

    |

  19. The value of lim(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

    Text Solution

    |

  20. lim(xtooo) (1)/(x+1)tan((pix+1)/(2x+2)) is equal to

    Text Solution

    |