Home
Class 12
MATHS
lim(xto1) (xsin(x-[x]))/(x-1), where [.]...

`lim_(xto1) (xsin(x-[x]))/(x-1)`, where `[.]` denotes the greatest integer function, is equal to

A

`(2)/(pi-1)`

B

`(pi+1)/(2)`

C

`(2)/(pi+1)`

D

`(2(pi+1))/(pi-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 1} \frac{x \sin(x - [x])}{x - 1} \), where \([x]\) denotes the greatest integer function, we will analyze the behavior of the function as \(x\) approaches 1 from the left and right. ### Step-by-Step Solution: 1. **Understanding the Greatest Integer Function**: - As \(x\) approaches 1 from the left (denoted as \(x \to 1^-\)), the greatest integer function \([x]\) will equal 0 because for any \(x < 1\), the greatest integer less than \(x\) is 0. 2. **Substituting into the Limit**: - Therefore, for \(x\) approaching 1 from the left: \[ x - [x] = x - 0 = x \] - The limit can be rewritten as: \[ \lim_{x \to 1^-} \frac{x \sin(x)}{x - 1} \] 3. **Evaluating the Numerator**: - As \(x\) approaches 1, \(\sin(x)\) approaches \(\sin(1)\). Thus, the numerator \(x \sin(x)\) approaches \(1 \cdot \sin(1) = \sin(1)\). 4. **Evaluating the Denominator**: - The denominator \(x - 1\) approaches \(0\) from the negative side (since \(x < 1\)), which means it approaches \(0^-\). 5. **Combining the Results**: - Now we have: \[ \lim_{x \to 1^-} \frac{\sin(1)}{x - 1} \] - Since the numerator is a finite positive number (\(\sin(1)\)) and the denominator approaches \(0^-\), the limit approaches: \[ -\infty \] 6. **Conclusion**: - Since the left-hand limit approaches \(-\infty\), the overall limit does not exist. ### Final Answer: \[ \lim_{x \to 1} \frac{x \sin(x - [x])}{x - 1} \text{ does not exist.} \]

To solve the limit \( \lim_{x \to 1} \frac{x \sin(x - [x])}{x - 1} \), where \([x]\) denotes the greatest integer function, we will analyze the behavior of the function as \(x\) approaches 1 from the left and right. ### Step-by-Step Solution: 1. **Understanding the Greatest Integer Function**: - As \(x\) approaches 1 from the left (denoted as \(x \to 1^-\)), the greatest integer function \([x]\) will equal 0 because for any \(x < 1\), the greatest integer less than \(x\) is 0. 2. **Substituting into the Limit**: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

("lim")_(xvec1)(xsin(x-[x]))/(x-1),w h e r e[dot] denotes the greatest integer function is equal to 0 (b) -1 (c) non-existent (d) none of these

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

If l=lim_(xto1^(+))2^(-2^(1/(1-x))) and m=lim_(xto1^(+))(x sin (x-[x]))/(x-1) (where [.] denotes greatest integer function). Then (l+m) is ………….

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. The value of lim(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n-1)-(n)/(1-2n).(...

    Text Solution

    |

  2. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/...

    Text Solution

    |

  3. lim(xto1) (xsin(x-[x]))/(x-1), where [.] denotes the greatest integer ...

    Text Solution

    |

  4. lim(xtooo) (x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

    Text Solution

    |

  5. lim(xto0) (x^(a)sin^(b)x)/(sin(x^(c))), where a,b,c inR~{0}, exists an...

    Text Solution

    |

  6. lim(x->0)(x^4(cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)) is equal to (a) 1 (...

    Text Solution

    |

  7. lim(xto1) (1-x^(2))/(sin2pix) is equal to

    Text Solution

    |

  8. lim(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

    Text Solution

    |

  9. lim(yto0) ((x+y)sec(x+y)-xsecx)/(y) is equal to

    Text Solution

    |

  10. lim(xto1) (1+sinpi((3x)/(1+x^(2))))/(1+cospix) is equal to

    Text Solution

    |

  11. ("lim")(xvecoo)sum(x=1)^(20)cos^(2n)(x-10)i se q u a lto 0 (b) 1 (...

    Text Solution

    |

  12. ("lim")(xvec1)((x^4+x^2+x+1)/(x^2-x+1))^(1-"cos"(x+1))/((x+1)^(2))i se...

    Text Solution

    |

  13. lim(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

    Text Solution

    |

  14. The value of lim(xto0) ([(100x)/(sinx)]+[(99sinx)/(x)]) (where [.] rep...

    Text Solution

    |

  15. The value of lim(xtoa) sqrt(a^(2)-x^(2))"cot"(pi)/(2)sqrt((a-x)/(a+x))...

    Text Solution

    |

  16. lim(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest...

    Text Solution

    |

  17. The value of lim(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

    Text Solution

    |

  18. lim(xtooo) (1)/(x+1)tan((pix+1)/(2x+2)) is equal to

    Text Solution

    |

  19. The value of ("lim")(xvec1^-)(1-sqrt(x))/((ccos^(-1)x)^2) is 4 (b) ...

    Text Solution

    |

  20. ("lim")(xvecpi/2)(sin(xcosx)/("cos"(xsinx)i se q u a lto 0 (b) p/2 (...

    Text Solution

    |