Home
Class 12
MATHS
lim(xto0) (x^(a)sin^(b)x)/(sin(x^(c))), ...

`lim_(xto0) (x^(a)sin^(b)x)/(sin(x^(c)))`, where `a,b,c inR~{0},` exists and has non-zero value. Then,

A

0

B

`pi//2`

C

`pi`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 0} \frac{x^a \sin^b x}{\sin(x^c)} \), where \( a, b, c \in \mathbb{R} \setminus \{0\} \), we need to analyze the behavior of the function as \( x \) approaches 0. ### Step-by-step Solution: 1. **Rewrite the Limit**: We start by rewriting the limit expression: \[ \lim_{x \to 0} \frac{x^a \sin^b x}{\sin(x^c)} = \lim_{x \to 0} \frac{x^a (\sin x)^b}{\sin(x^c)} \] 2. **Use the Sine Limit Property**: We know that as \( x \to 0 \), \( \frac{\sin x}{x} \to 1 \). Therefore, we can rewrite \( \sin x \) as \( x \) times a limit: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \implies \sin x \approx x \text{ for small } x \] Thus, we can express \( \sin^b x \) as: \[ \sin^b x = (x \cdot \frac{\sin x}{x})^b = x^b \left( \frac{\sin x}{x} \right)^b \] 3. **Rewrite the Expression**: Substitute this back into our limit: \[ \lim_{x \to 0} \frac{x^a (x^b \left( \frac{\sin x}{x} \right)^b)}{\sin(x^c)} = \lim_{x \to 0} \frac{x^{a+b} \left( \frac{\sin x}{x} \right)^b}{\sin(x^c)} \] 4. **Analyze the Denominator**: For small \( x \), \( x^c \) also approaches 0, so we can use the same sine limit property: \[ \sin(x^c) \approx x^c \] Thus, we can rewrite our limit as: \[ \lim_{x \to 0} \frac{x^{a+b} \left( \frac{\sin x}{x} \right)^b}{x^c} \] 5. **Simplify the Limit**: This simplifies to: \[ \lim_{x \to 0} x^{a+b-c} \left( \frac{\sin x}{x} \right)^b \] 6. **Evaluate the Limit**: As \( x \to 0 \), \( \left( \frac{\sin x}{x} \right)^b \to 1 \). Therefore, we focus on the term \( x^{a+b-c} \): - For the limit to exist and be non-zero, the exponent \( a + b - c \) must equal 0. - This gives us the condition: \[ a + b - c = 0 \implies a + b = c \] ### Conclusion: Thus, the value of \( a + b \) is equal to \( c \).

To solve the limit problem \( \lim_{x \to 0} \frac{x^a \sin^b x}{\sin(x^c)} \), where \( a, b, c \in \mathbb{R} \setminus \{0\} \), we need to analyze the behavior of the function as \( x \) approaches 0. ### Step-by-step Solution: 1. **Rewrite the Limit**: We start by rewriting the limit expression: \[ \lim_{x \to 0} \frac{x^a \sin^b x}{\sin(x^c)} = \lim_{x \to 0} \frac{x^a (\sin x)^b}{\sin(x^c)} ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If lim_(x→0) ​ (x^asin^b x)/(sin(x^c)) , where a , b , c in R ~{0},exists and has non-zero value. Then,

("lim")_(xvec0)(x^asin^b x)/(sin(x^c)) , where a , b , c in R ~{0},exists and has non-zero value. Then, a+c = (a) b (b) -1 0 (d) none of these

Given, lim_(xto0) (sin3x)/(sin7x) .

lim_(xto0)((a+x)^2sin(a+x)-a^2sina)/x

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

Evaluate lim_(xto0) (2sinx-sin2x)/(x^(3))

Evaluate: lim_(xto0)(tan8x)/(sin3x)

Evaluate lim_(xto0)(tan2x-sin2x)/(x^(3))

Evaluate lim_(xto0) sin(picos^(2)x)/(x^(2)).

Evaluate : lim_(xto0) (a^(x)-b^(x))/x

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xto1) (xsin(x-[x]))/(x-1), where [.] denotes the greatest integer ...

    Text Solution

    |

  2. lim(xtooo) (x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

    Text Solution

    |

  3. lim(xto0) (x^(a)sin^(b)x)/(sin(x^(c))), where a,b,c inR~{0}, exists an...

    Text Solution

    |

  4. lim(x->0)(x^4(cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)) is equal to (a) 1 (...

    Text Solution

    |

  5. lim(xto1) (1-x^(2))/(sin2pix) is equal to

    Text Solution

    |

  6. lim(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

    Text Solution

    |

  7. lim(yto0) ((x+y)sec(x+y)-xsecx)/(y) is equal to

    Text Solution

    |

  8. lim(xto1) (1+sinpi((3x)/(1+x^(2))))/(1+cospix) is equal to

    Text Solution

    |

  9. ("lim")(xvecoo)sum(x=1)^(20)cos^(2n)(x-10)i se q u a lto 0 (b) 1 (...

    Text Solution

    |

  10. ("lim")(xvec1)((x^4+x^2+x+1)/(x^2-x+1))^(1-"cos"(x+1))/((x+1)^(2))i se...

    Text Solution

    |

  11. lim(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

    Text Solution

    |

  12. The value of lim(xto0) ([(100x)/(sinx)]+[(99sinx)/(x)]) (where [.] rep...

    Text Solution

    |

  13. The value of lim(xtoa) sqrt(a^(2)-x^(2))"cot"(pi)/(2)sqrt((a-x)/(a+x))...

    Text Solution

    |

  14. lim(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest...

    Text Solution

    |

  15. The value of lim(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

    Text Solution

    |

  16. lim(xtooo) (1)/(x+1)tan((pix+1)/(2x+2)) is equal to

    Text Solution

    |

  17. The value of ("lim")(xvec1^-)(1-sqrt(x))/((ccos^(-1)x)^2) is 4 (b) ...

    Text Solution

    |

  18. ("lim")(xvecpi/2)(sin(xcosx)/("cos"(xsinx)i se q u a lto 0 (b) p/2 (...

    Text Solution

    |

  19. lim(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greates...

    Text Solution

    |

  20. Evaluate lim(xto0) (x(e^(x)-1))/(1-cosx) is equal to

    Text Solution

    |