Home
Class 12
MATHS
lim(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^...

`lim_(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2))` is equal to

A

`f(x)f(y)`

B

`f(x)+f(y)`

C

`f(x)-f(y)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{1}{x} \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) \), we can follow these steps: ### Step 1: Simplify the expression inside the inverse cosine We know that: \[ \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) \] can be rewritten using the identity: \[ \cos^{-1}(y) = 2 \tan^{-1}(\sqrt{\frac{1-y}{1+y}}) \] However, for small values of \(x\), we can use the known result: \[ \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) = 2 \tan^{-1}(x) \] This holds true for \(x \geq 0\) and \(x < 0\) with a sign adjustment. ### Step 2: Substitute the identity into the limit Now, substituting this into our limit gives: \[ \lim_{x \to 0} \frac{1}{x} \cdot 2 \tan^{-1}(x) \] ### Step 3: Split the limit into two cases We will evaluate the limit from the right-hand side (as \(x\) approaches 0 from positive values) and the left-hand side (as \(x\) approaches 0 from negative values). #### Right-Hand Limit (as \(x \to 0^+\)): \[ \lim_{x \to 0^+} \frac{2 \tan^{-1}(x)}{x} \] Using the known limit: \[ \lim_{x \to 0} \frac{\tan^{-1}(x)}{x} = 1 \] Thus: \[ \lim_{x \to 0^+} \frac{2 \tan^{-1}(x)}{x} = 2 \cdot 1 = 2 \] #### Left-Hand Limit (as \(x \to 0^-\)): For \(x < 0\), we have: \[ \lim_{x \to 0^-} \frac{1}{x} \cdot (-2 \tan^{-1}(x)) = \lim_{x \to 0^-} \frac{-2 \tan^{-1}(x)}{x} \] Again, using the same limit: \[ \lim_{x \to 0} \frac{\tan^{-1}(x)}{x} = 1 \] Thus: \[ \lim_{x \to 0^-} \frac{-2 \tan^{-1}(x)}{x} = -2 \cdot 1 = -2 \] ### Step 4: Conclusion Since the right-hand limit (2) and the left-hand limit (-2) are not equal, we conclude that: \[ \lim_{x \to 0} \frac{1}{x} \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) \text{ does not exist.} \]

To solve the limit \( \lim_{x \to 0} \frac{1}{x} \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) \), we can follow these steps: ### Step 1: Simplify the expression inside the inverse cosine We know that: \[ \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) \] can be rewritten using the identity: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xto1) (1-x^(2))/(sin2pix) is equal to

lim_(xto0)(1-cos(x^(2)))/(x^(3)(4^(x)-1)) is equal to:

Find the following limits: (i)lim_(xto0) (1)/(x)sin^(-1)((2x)/(1+x^(2)))" "(ii)lim_(xto0) (1)/(x)sin^(-1)(3x-4x^(3))

Evaluate lim_(xto0) (cos^(-1)((1-x^(2))/(1+x^(2))))/(sin^(-1)x).

lim_(xto0)((e^(x)-1)/x)^(1//x)

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

lim_(xto1) (1+sinpi((3x)/(1+x^(2))))/(1+cospix) is equal to

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

Evaluate lim_(xto0^(+)) (1)/(x)cos^(-1)((sinx)/(x)) .

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(x->0)(x^4(cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)) is equal to (a) 1 (...

    Text Solution

    |

  2. lim(xto1) (1-x^(2))/(sin2pix) is equal to

    Text Solution

    |

  3. lim(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

    Text Solution

    |

  4. lim(yto0) ((x+y)sec(x+y)-xsecx)/(y) is equal to

    Text Solution

    |

  5. lim(xto1) (1+sinpi((3x)/(1+x^(2))))/(1+cospix) is equal to

    Text Solution

    |

  6. ("lim")(xvecoo)sum(x=1)^(20)cos^(2n)(x-10)i se q u a lto 0 (b) 1 (...

    Text Solution

    |

  7. ("lim")(xvec1)((x^4+x^2+x+1)/(x^2-x+1))^(1-"cos"(x+1))/((x+1)^(2))i se...

    Text Solution

    |

  8. lim(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

    Text Solution

    |

  9. The value of lim(xto0) ([(100x)/(sinx)]+[(99sinx)/(x)]) (where [.] rep...

    Text Solution

    |

  10. The value of lim(xtoa) sqrt(a^(2)-x^(2))"cot"(pi)/(2)sqrt((a-x)/(a+x))...

    Text Solution

    |

  11. lim(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest...

    Text Solution

    |

  12. The value of lim(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

    Text Solution

    |

  13. lim(xtooo) (1)/(x+1)tan((pix+1)/(2x+2)) is equal to

    Text Solution

    |

  14. The value of ("lim")(xvec1^-)(1-sqrt(x))/((ccos^(-1)x)^2) is 4 (b) ...

    Text Solution

    |

  15. ("lim")(xvecpi/2)(sin(xcosx)/("cos"(xsinx)i se q u a lto 0 (b) p/2 (...

    Text Solution

    |

  16. lim(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greates...

    Text Solution

    |

  17. Evaluate lim(xto0) (x(e^(x)-1))/(1-cosx) is equal to

    Text Solution

    |

  18. If f(x)=lim(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal...

    Text Solution

    |

  19. lim(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part o...

    Text Solution

    |

  20. The value of lim(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x))...

    Text Solution

    |