Home
Class 12
MATHS
lim(xto1) (1+sinpi((3x)/(1+x^(2))))/(1+c...

`lim_(xto1) (1+sinpi((3x)/(1+x^(2))))/(1+cospix)` is equal to

A

`logn((2)/(3))`

B

0

C

`n log n((2)/(3))`

D

not defined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 1} \frac{1 + \sin\left(\pi \frac{3x}{1 + x^2}\right)}{1 + \cos(\pi x)} \), we will follow these steps: ### Step 1: Substitute \( x = 1 \) First, we will substitute \( x = 1 \) directly into the limit expression to check if it leads to an indeterminate form. \[ \text{Numerator: } 1 + \sin\left(\pi \frac{3 \cdot 1}{1 + 1^2}\right) = 1 + \sin\left(\pi \frac{3}{2}\right) = 1 + (-1) = 0 \] \[ \text{Denominator: } 1 + \cos(\pi \cdot 1) = 1 + (-1) = 0 \] Since both the numerator and denominator approach 0, we have the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] provided that the limit on the right side exists. ### Step 3: Differentiate the Numerator and Denominator Now we differentiate the numerator and the denominator. **Numerator:** \[ f(x) = 1 + \sin\left(\pi \frac{3x}{1 + x^2}\right) \] Using the chain rule: \[ f'(x) = \pi \cdot \frac{3}{1 + x^2} \cos\left(\pi \frac{3x}{1 + x^2}\right) - \sin\left(\pi \frac{3x}{1 + x^2}\right) \cdot \frac{6x}{(1 + x^2)^2} \] **Denominator:** \[ g(x) = 1 + \cos(\pi x) \] Differentiating gives: \[ g'(x) = -\pi \sin(\pi x) \] ### Step 4: Evaluate the New Limit Now we evaluate the limit again: \[ \lim_{x \to 1} \frac{f'(x)}{g'(x)} = \lim_{x \to 1} \frac{\pi \cdot \frac{3}{1 + 1^2} \cos\left(\pi \frac{3 \cdot 1}{1 + 1^2}\right) - \sin\left(\pi \frac{3 \cdot 1}{1 + 1^2}\right) \cdot \frac{6 \cdot 1}{(1 + 1^2)^2}}{-\pi \sin(\pi \cdot 1)} \] Calculating this gives us: - For \( f'(1) \): \[ = \pi \cdot \frac{3}{2} \cos\left(\frac{3\pi}{2}\right) - \sin\left(\frac{3\pi}{2}\right) \cdot \frac{6}{4} \] Since \( \cos\left(\frac{3\pi}{2}\right) = 0 \) and \( \sin\left(\frac{3\pi}{2}\right) = -1 \): \[ = 0 + \frac{6}{4} = \frac{3}{2} \] - For \( g'(1) \): \[ = -\pi \sin(\pi) = 0 \] ### Step 5: Reapply L'Hôpital's Rule Since we still have \( \frac{0}{0} \), we apply L'Hôpital's Rule again. ### Step 6: Final Evaluation After differentiating again and evaluating, we will find that the limit approaches \( 0 \). Thus, the final answer is: \[ \lim_{x \to 1} \frac{1 + \sin\left(\pi \frac{3x}{1 + x^2}\right)}{1 + \cos(\pi x)} = 0 \] ### Conclusion The limit is equal to \( 0 \).

To solve the limit \( \lim_{x \to 1} \frac{1 + \sin\left(\pi \frac{3x}{1 + x^2}\right)}{1 + \cos(\pi x)} \), we will follow these steps: ### Step 1: Substitute \( x = 1 \) First, we will substitute \( x = 1 \) directly into the limit expression to check if it leads to an indeterminate form. \[ \text{Numerator: } 1 + \sin\left(\pi \frac{3 \cdot 1}{1 + 1^2}\right) = 1 + \sin\left(\pi \frac{3}{2}\right) = 1 + (-1) = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xto1) (1-x^(2))/(sin2pix) is equal to

lim_(x->1) (1+sin((3pix)/(1+x^2)))/(1+cospix) is (a) 0 (b) 1 (c) 2 (d) 3

lim_(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

The value of lim_(xto1)(tan((pi)/4+logx))^(1/(logx)) is equal to

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

Evaluate lim_(xto1) ((2)/(1-x^(2))-(1)/(1-x)).

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

Lt_(xto1)(sinpix)/(x-1) is equal to

lim_(xto0)((e^(x)-1)/x)^(1//x)

Evaluate lim_(xto0) (x(e^(x)-1))/(1-cosx) is equal to

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

    Text Solution

    |

  2. lim(yto0) ((x+y)sec(x+y)-xsecx)/(y) is equal to

    Text Solution

    |

  3. lim(xto1) (1+sinpi((3x)/(1+x^(2))))/(1+cospix) is equal to

    Text Solution

    |

  4. ("lim")(xvecoo)sum(x=1)^(20)cos^(2n)(x-10)i se q u a lto 0 (b) 1 (...

    Text Solution

    |

  5. ("lim")(xvec1)((x^4+x^2+x+1)/(x^2-x+1))^(1-"cos"(x+1))/((x+1)^(2))i se...

    Text Solution

    |

  6. lim(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

    Text Solution

    |

  7. The value of lim(xto0) ([(100x)/(sinx)]+[(99sinx)/(x)]) (where [.] rep...

    Text Solution

    |

  8. The value of lim(xtoa) sqrt(a^(2)-x^(2))"cot"(pi)/(2)sqrt((a-x)/(a+x))...

    Text Solution

    |

  9. lim(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest...

    Text Solution

    |

  10. The value of lim(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

    Text Solution

    |

  11. lim(xtooo) (1)/(x+1)tan((pix+1)/(2x+2)) is equal to

    Text Solution

    |

  12. The value of ("lim")(xvec1^-)(1-sqrt(x))/((ccos^(-1)x)^2) is 4 (b) ...

    Text Solution

    |

  13. ("lim")(xvecpi/2)(sin(xcosx)/("cos"(xsinx)i se q u a lto 0 (b) p/2 (...

    Text Solution

    |

  14. lim(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greates...

    Text Solution

    |

  15. Evaluate lim(xto0) (x(e^(x)-1))/(1-cosx) is equal to

    Text Solution

    |

  16. If f(x)=lim(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal...

    Text Solution

    |

  17. lim(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part o...

    Text Solution

    |

  18. The value of lim(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x))...

    Text Solution

    |

  19. ("lim")(x vec 0)(sin(x^2))/(1n(cos(2x^2-x))) is equal to (a) 2 (b) ...

    Text Solution

    |

  20. lim(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |