Home
Class 12
MATHS
lim(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^...

`lim_(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)}` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to \infty} \left( (x+5) \tan^{-1}(x+5) - (x+1) \tan^{-1}(x+1) \right) \), we can follow these steps: ### Step 1: Identify the limit We need to evaluate the limit as \( x \) approaches infinity for the expression given. ### Step 2: Substitute the limit into the expression As \( x \to \infty \), both \( \tan^{-1}(x+5) \) and \( \tan^{-1}(x+1) \) approach \( \frac{\pi}{2} \). Therefore, we can rewrite the limit: \[ \lim_{x \to \infty} \left( (x+5) \tan^{-1}(x+5) - (x+1) \tan^{-1}(x+1) \right) \] ### Step 3: Replace \( \tan^{-1}(x+5) \) and \( \tan^{-1}(x+1) \) with \( \frac{\pi}{2} \) Substituting \( \tan^{-1}(x+5) \) and \( \tan^{-1}(x+1) \) with \( \frac{\pi}{2} \): \[ = \lim_{x \to \infty} \left( (x+5) \cdot \frac{\pi}{2} - (x+1) \cdot \frac{\pi}{2} \right) \] ### Step 4: Simplify the expression Now, we can factor out \( \frac{\pi}{2} \): \[ = \lim_{x \to \infty} \left( \frac{\pi}{2} \left( (x+5) - (x+1) \right) \right) \] This simplifies to: \[ = \lim_{x \to \infty} \left( \frac{\pi}{2} \left( x + 5 - x - 1 \right) \right) \] \[ = \lim_{x \to \infty} \left( \frac{\pi}{2} \cdot (5 - 1) \right) \] ### Step 5: Final calculation Now, we can simplify further: \[ = \frac{\pi}{2} \cdot 4 = 2\pi \] ### Conclusion Thus, the limit evaluates to: \[ \lim_{x \to \infty} \left( (x+5) \tan^{-1}(x+5) - (x+1) \tan^{-1}(x+1) \right) = 2\pi \] ---

To solve the limit problem \( \lim_{x \to \infty} \left( (x+5) \tan^{-1}(x+5) - (x+1) \tan^{-1}(x+1) \right) \), we can follow these steps: ### Step 1: Identify the limit We need to evaluate the limit as \( x \) approaches infinity for the expression given. ### Step 2: Substitute the limit into the expression As \( x \to \infty \), both \( \tan^{-1}(x+5) \) and \( \tan^{-1}(x+1) \) approach \( \frac{\pi}{2} \). Therefore, we can rewrite the limit: \[ ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

("lim")_(xvecoo)"{"x+5")"tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to pi (b) 2pi (c) pi/2 (d) none of these

lim_(xtooo) (x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

lim_(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

lim_(xrarr0) (x)/(tan^-1x) is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

lim_(xrarr0) (1)/(x^(2))|(1-cos3x,log_(e)(1+4x)),(sin^(-1)(x^(x)-),tan^(-1)(2x))| is equal to

The value of underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1) x))) is equal to

lim_(xtooo) ((2x+1)^(40)(4x+1)^(5))/((2x+3)^(45)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. ("lim")(xvecoo)sum(x=1)^(20)cos^(2n)(x-10)i se q u a lto 0 (b) 1 (...

    Text Solution

    |

  2. ("lim")(xvec1)((x^4+x^2+x+1)/(x^2-x+1))^(1-"cos"(x+1))/((x+1)^(2))i se...

    Text Solution

    |

  3. lim(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

    Text Solution

    |

  4. The value of lim(xto0) ([(100x)/(sinx)]+[(99sinx)/(x)]) (where [.] rep...

    Text Solution

    |

  5. The value of lim(xtoa) sqrt(a^(2)-x^(2))"cot"(pi)/(2)sqrt((a-x)/(a+x))...

    Text Solution

    |

  6. lim(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest...

    Text Solution

    |

  7. The value of lim(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

    Text Solution

    |

  8. lim(xtooo) (1)/(x+1)tan((pix+1)/(2x+2)) is equal to

    Text Solution

    |

  9. The value of ("lim")(xvec1^-)(1-sqrt(x))/((ccos^(-1)x)^2) is 4 (b) ...

    Text Solution

    |

  10. ("lim")(xvecpi/2)(sin(xcosx)/("cos"(xsinx)i se q u a lto 0 (b) p/2 (...

    Text Solution

    |

  11. lim(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greates...

    Text Solution

    |

  12. Evaluate lim(xto0) (x(e^(x)-1))/(1-cosx) is equal to

    Text Solution

    |

  13. If f(x)=lim(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal...

    Text Solution

    |

  14. lim(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part o...

    Text Solution

    |

  15. The value of lim(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x))...

    Text Solution

    |

  16. ("lim")(x vec 0)(sin(x^2))/(1n(cos(2x^2-x))) is equal to (a) 2 (b) ...

    Text Solution

    |

  17. lim(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  18. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  19. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  20. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |