Home
Class 12
MATHS
The value of lim(xto0) ([(100x)/(sinx)]+...

The value of `lim_(xto0) ([(100x)/(sinx)]+[(99sinx)/(x)])` (where `[.]` represents the greatest integral function) is

A

`199`

B

`198`

C

`0`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \[ \lim_{x \to 0} \left( \left\lfloor \frac{100x}{\sin x} \right\rfloor + \left\lfloor \frac{99 \sin x}{x} \right\rfloor \right) \] we will analyze each term separately as \( x \) approaches 0. ### Step 1: Analyze \(\frac{100x}{\sin x}\) Using the limit property: \[ \lim_{x \to 0} \frac{x}{\sin x} = 1 \] we can say: \[ \lim_{x \to 0} \frac{100x}{\sin x} = 100 \cdot \lim_{x \to 0} \frac{x}{\sin x} = 100 \cdot 1 = 100 \] As \( x \) approaches 0, \(\frac{100x}{\sin x}\) approaches 100 from above (since \( \sin x < x \) for small \( x \)), which means: \[ \frac{100x}{\sin x} \approx 100 + \epsilon \quad (\text{where } \epsilon \text{ is a small positive number}) \] ### Step 2: Apply the Greatest Integer Function Since \(\frac{100x}{\sin x}\) approaches 100 from above, we have: \[ \left\lfloor \frac{100x}{\sin x} \right\rfloor = 100 \] for sufficiently small \( x \). ### Step 3: Analyze \(\frac{99 \sin x}{x}\) Using the limit property: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] we can say: \[ \lim_{x \to 0} \frac{99 \sin x}{x} = 99 \cdot \lim_{x \to 0} \frac{\sin x}{x} = 99 \cdot 1 = 99 \] As \( x \) approaches 0, \(\frac{99 \sin x}{x}\) approaches 99 from below (since \( \sin x < x \)), which means: \[ \frac{99 \sin x}{x} \approx 99 - \delta \quad (\text{where } \delta \text{ is a small positive number}) \] ### Step 4: Apply the Greatest Integer Function Since \(\frac{99 \sin x}{x}\) approaches 99 from below, we have: \[ \left\lfloor \frac{99 \sin x}{x} \right\rfloor = 98 \] for sufficiently small \( x \). ### Step 5: Combine the Results Now, we combine the results from Steps 2 and 4: \[ \lim_{x \to 0} \left( \left\lfloor \frac{100x}{\sin x} \right\rfloor + \left\lfloor \frac{99 \sin x}{x} \right\rfloor \right) = 100 + 98 = 198 \] ### Final Answer Thus, the value of the limit is \[ \boxed{198} \]

To find the value of \[ \lim_{x \to 0} \left( \left\lfloor \frac{100x}{\sin x} \right\rfloor + \left\lfloor \frac{99 \sin x}{x} \right\rfloor \right) \] we will analyze each term separately as \( x \) approaches 0. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x->0)([(100 x)/(sinx)]+[(99sinx)/x]) (where [.] represents the greatest integral function) is (a) 199 (b) 198 (c) 0 (d) none of these

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

lim_(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greatest integer function) is equal to

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

lim_(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greatest integer function).

Find lim_(xto0) [x]((e^(1//x)-1)/(e^(1//x)+1)), (where [.] represents the greatest integer funciton).

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. ("lim")(xvec1)((x^4+x^2+x+1)/(x^2-x+1))^(1-"cos"(x+1))/((x+1)^(2))i se...

    Text Solution

    |

  2. lim(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

    Text Solution

    |

  3. The value of lim(xto0) ([(100x)/(sinx)]+[(99sinx)/(x)]) (where [.] rep...

    Text Solution

    |

  4. The value of lim(xtoa) sqrt(a^(2)-x^(2))"cot"(pi)/(2)sqrt((a-x)/(a+x))...

    Text Solution

    |

  5. lim(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest...

    Text Solution

    |

  6. The value of lim(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

    Text Solution

    |

  7. lim(xtooo) (1)/(x+1)tan((pix+1)/(2x+2)) is equal to

    Text Solution

    |

  8. The value of ("lim")(xvec1^-)(1-sqrt(x))/((ccos^(-1)x)^2) is 4 (b) ...

    Text Solution

    |

  9. ("lim")(xvecpi/2)(sin(xcosx)/("cos"(xsinx)i se q u a lto 0 (b) p/2 (...

    Text Solution

    |

  10. lim(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greates...

    Text Solution

    |

  11. Evaluate lim(xto0) (x(e^(x)-1))/(1-cosx) is equal to

    Text Solution

    |

  12. If f(x)=lim(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal...

    Text Solution

    |

  13. lim(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part o...

    Text Solution

    |

  14. The value of lim(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x))...

    Text Solution

    |

  15. ("lim")(x vec 0)(sin(x^2))/(1n(cos(2x^2-x))) is equal to (a) 2 (b) ...

    Text Solution

    |

  16. lim(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  17. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  18. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  19. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  20. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |