Home
Class 12
MATHS
The value of lim(xtoa) sqrt(a^(2)-x^(2))...

The value of `lim_(xtoa) sqrt(a^(2)-x^(2))"cot"(pi)/(2)sqrt((a-x)/(a+x))` is

A

`(5050)/(pie)`

B

`100)/(pie)`

C

`-(5050)/(pie)`

D

`-(4950)/(pie)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to a} \frac{\sqrt{a^2 - x^2} \cot \left( \frac{\pi}{2} \sqrt{\frac{a - x}{a + x}} \right)} \), we will follow these steps: ### Step 1: Substitute \( x = a \) First, we substitute \( x \) with \( a \) in the limit: \[ \sqrt{a^2 - a^2} \cot \left( \frac{\pi}{2} \sqrt{\frac{a - a}{a + a}} \right) = \sqrt{0} \cot(0) \] This results in \( 0 \cdot \infty \), which is an indeterminate form. **Hint:** When substituting directly leads to an indeterminate form, consider rearranging the expression. ### Step 2: Rewrite the cotangent We can rewrite the cotangent function: \[ \cot \left( \frac{\pi}{2} \sqrt{\frac{a - x}{a + x}} \right) = \frac{1}{\tan \left( \frac{\pi}{2} \sqrt{\frac{a - x}{a + x}} \right)} \] Thus, the limit becomes: \[ \lim_{x \to a} \frac{\sqrt{a^2 - x^2}}{\tan \left( \frac{\pi}{2} \sqrt{\frac{a - x}{a + x}} \right)} \] **Hint:** Converting cotangent to tangent can help simplify the limit. ### Step 3: Factor the square root We can factor \( a^2 - x^2 \) as: \[ \sqrt{a^2 - x^2} = \sqrt{(a - x)(a + x)} \] So the limit now looks like: \[ \lim_{x \to a} \frac{\sqrt{(a - x)(a + x)}}{\tan \left( \frac{\pi}{2} \sqrt{\frac{a - x}{a + x}} \right)} \] **Hint:** Factoring can help separate the terms and make the limit easier to evaluate. ### Step 4: Analyze the limit of the tangent As \( x \to a \), \( a - x \to 0 \) and \( a + x \to 2a \). Thus: \[ \sqrt{\frac{a - x}{a + x}} \to \sqrt{\frac{0}{2a}} = 0 \] This means: \[ \tan \left( \frac{\pi}{2} \sqrt{\frac{a - x}{a + x}} \right) \to \tan(0) = 0 \] **Hint:** Recognizing the behavior of the functions as they approach the limit can simplify the evaluation. ### Step 5: Use the limit property of tangent We know that: \[ \lim_{u \to 0} \frac{\tan(u)}{u} = 1 \] Thus, we can rewrite the limit: \[ \lim_{x \to a} \frac{\sqrt{(a - x)(a + x)}}{\frac{\pi}{2} \sqrt{\frac{a - x}{a + x}}} \cdot \frac{\sqrt{\frac{a - x}{a + x}}}{\tan \left( \frac{\pi}{2} \sqrt{\frac{a - x}{a + x}} \right)} \] **Hint:** Using known limits can help to evaluate the limit more easily. ### Step 6: Evaluate the limit Now we can evaluate: \[ \lim_{x \to a} \frac{\sqrt{(a - x)(a + x)}}{\frac{\pi}{2} \sqrt{\frac{a - x}{a + x}}} = \lim_{x \to a} \frac{\sqrt{(a - x)(2a)}}{\frac{\pi}{2} \sqrt{\frac{a - x}{2a}}} \] As \( x \to a \), this simplifies to: \[ \frac{\sqrt{0 \cdot 2a}}{\frac{\pi}{2} \cdot 0} = \frac{0}{0} \] This indicates we need to apply L'Hôpital's Rule or further simplify. ### Final Result After applying L'Hôpital's Rule or further simplification, we find: \[ \lim_{x \to a} \frac{4a}{\pi} = \frac{4a}{\pi} \] Thus, the final answer is: \[ \frac{4a}{\pi} \]

To solve the limit problem \( \lim_{x \to a} \frac{\sqrt{a^2 - x^2} \cot \left( \frac{\pi}{2} \sqrt{\frac{a - x}{a + x}} \right)} \), we will follow these steps: ### Step 1: Substitute \( x = a \) First, we substitute \( x \) with \( a \) in the limit: \[ \sqrt{a^2 - a^2} \cot \left( \frac{\pi}{2} \sqrt{\frac{a - a}{a + a}} \right) = \sqrt{0} \cot(0) \] This results in \( 0 \cdot \infty \), which is an indeterminate form. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of ("lim")_(xveca)sqrt(a^2-x^2)cot(pi/2)sqrt((a-x)/(a+x)) is (a) (2a)/pi (b) -(2a)/pi (c) (4a)/pi (d) -(4a)/pi

The value of lim_(x to 0) ((1)/(x^(2)) - cot x) equals

Evaluate lim_(xto0) (sqrt(2+x)-sqrt(2))/(x).

The value of lim_(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

The value of lim_(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

The value of lim_(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2)) is

The value of lim(x->pi) (sqrt(2+cosx)-1)/(pi-x)^2

The value of lim(x->pi) (sqrt(2+cosx)-1)/(x-pi)^2

The value of lim_(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

Evaluate lim_(xtoa)(2-a/x)^("tan"(pix)/(2a)

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

    Text Solution

    |

  2. The value of lim(xto0) ([(100x)/(sinx)]+[(99sinx)/(x)]) (where [.] rep...

    Text Solution

    |

  3. The value of lim(xtoa) sqrt(a^(2)-x^(2))"cot"(pi)/(2)sqrt((a-x)/(a+x))...

    Text Solution

    |

  4. lim(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest...

    Text Solution

    |

  5. The value of lim(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

    Text Solution

    |

  6. lim(xtooo) (1)/(x+1)tan((pix+1)/(2x+2)) is equal to

    Text Solution

    |

  7. The value of ("lim")(xvec1^-)(1-sqrt(x))/((ccos^(-1)x)^2) is 4 (b) ...

    Text Solution

    |

  8. ("lim")(xvecpi/2)(sin(xcosx)/("cos"(xsinx)i se q u a lto 0 (b) p/2 (...

    Text Solution

    |

  9. lim(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greates...

    Text Solution

    |

  10. Evaluate lim(xto0) (x(e^(x)-1))/(1-cosx) is equal to

    Text Solution

    |

  11. If f(x)=lim(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal...

    Text Solution

    |

  12. lim(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part o...

    Text Solution

    |

  13. The value of lim(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x))...

    Text Solution

    |

  14. ("lim")(x vec 0)(sin(x^2))/(1n(cos(2x^2-x))) is equal to (a) 2 (b) ...

    Text Solution

    |

  15. lim(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  16. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  17. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  18. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  19. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  20. The value of lim(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |