Home
Class 12
MATHS
The value of lim(xto0) (1-(cosx)sqrt(cos...

The value of `lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2))` is

A

`(1)/(3)`

B

`(1)/(2)`

C

`(1)/(6)`

D

`(5)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{x \to 0} \frac{1 - \cos x \sqrt{\cos 2x}}{x^2}, \] we start by substituting \( x = 0 \): 1. **Substitution**: \[ \cos(0) = 1 \quad \text{and} \quad \cos(2 \cdot 0) = 1. \] Therefore, the expression becomes: \[ \frac{1 - 1 \cdot \sqrt{1}}{0^2} = \frac{0}{0}, \] which is an indeterminate form. **Hint**: If you encounter a \( \frac{0}{0} \) form, consider using algebraic manipulation or L'Hôpital's rule. 2. **Rationalization**: To resolve the indeterminate form, we can rationalize the numerator. We multiply and divide by the conjugate: \[ \frac{(1 - \cos x \sqrt{\cos 2x})(1 + \cos x \sqrt{\cos 2x})}{(1 + \cos x \sqrt{\cos 2x})}. \] This gives us: \[ \frac{1 - (\cos x \sqrt{\cos 2x})^2}{x^2(1 + \cos x \sqrt{\cos 2x})}. \] **Hint**: Rationalizing helps to eliminate the square root and simplify the expression. 3. **Simplifying the Numerator**: We can simplify the numerator: \[ 1 - \cos^2 x \cos 2x = \sin^2 x \cos 2x. \] Thus, our limit now looks like: \[ \lim_{x \to 0} \frac{\sin^2 x \cos 2x}{x^2(1 + \cos x \sqrt{\cos 2x})}. \] **Hint**: Use trigonometric identities to simplify expressions involving sine and cosine. 4. **Applying Limit**: Now we can apply the limit: \[ \lim_{x \to 0} \frac{\sin^2 x}{x^2} \cdot \lim_{x \to 0} \frac{\cos 2x}{1 + \cos x \sqrt{\cos 2x}}. \] We know that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \implies \lim_{x \to 0} \frac{\sin^2 x}{x^2} = 1. \] Also, as \( x \to 0 \): \[ \cos 2x \to 1 \quad \text{and} \quad \cos x \to 1 \implies \sqrt{\cos 2x} \to 1. \] Therefore, \[ 1 + \cos x \sqrt{\cos 2x} \to 2. \] **Hint**: Break down the limit into manageable parts, and evaluate each part separately. 5. **Final Calculation**: Now we can combine these results: \[ \lim_{x \to 0} \frac{\sin^2 x}{x^2} \cdot \frac{1}{2} = 1 \cdot \frac{1}{2} = \frac{1}{2}. \] Thus, the value of the limit is \[ \boxed{\frac{1}{2}}. \]

To find the limit \[ \lim_{x \to 0} \frac{1 - \cos x \sqrt{\cos 2x}}{x^2}, \] we start by substituting \( x = 0 \): ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

The value of lim_(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

The value of lim_(xto0)(cos ax)^(cosec^(2)bx) is

Evaluate lim_(xto0) (1-cos2x)/x^(2)

The value of lim_(xto0)(1/(x^(2))-cotx) is

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

The value of lim_(xto0)(x cosx-log(1+x))/(x^(2)) is

The value of lim_(xto0)(x sin (sinxx)-sin^(2)x)/(x^(6)) equals

Evaluate lim_(xto0) (sqrt(2)-sqrt(1+cosx))/(sin^(2)x).

lim_(xto0) (1- cos 2x)/(x^(2)) = _______

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. The value of lim(xtoa) sqrt(a^(2)-x^(2))"cot"(pi)/(2)sqrt((a-x)/(a+x))...

    Text Solution

    |

  2. lim(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest...

    Text Solution

    |

  3. The value of lim(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

    Text Solution

    |

  4. lim(xtooo) (1)/(x+1)tan((pix+1)/(2x+2)) is equal to

    Text Solution

    |

  5. The value of ("lim")(xvec1^-)(1-sqrt(x))/((ccos^(-1)x)^2) is 4 (b) ...

    Text Solution

    |

  6. ("lim")(xvecpi/2)(sin(xcosx)/("cos"(xsinx)i se q u a lto 0 (b) p/2 (...

    Text Solution

    |

  7. lim(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greates...

    Text Solution

    |

  8. Evaluate lim(xto0) (x(e^(x)-1))/(1-cosx) is equal to

    Text Solution

    |

  9. If f(x)=lim(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal...

    Text Solution

    |

  10. lim(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part o...

    Text Solution

    |

  11. The value of lim(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x))...

    Text Solution

    |

  12. ("lim")(x vec 0)(sin(x^2))/(1n(cos(2x^2-x))) is equal to (a) 2 (b) ...

    Text Solution

    |

  13. lim(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  14. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  15. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  16. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  17. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  18. The value of lim(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  19. The value of lim(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

    Text Solution

    |

  20. If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo then lim(xtoa){f(x)}^(g(x))=e^...

    Text Solution

    |