Home
Class 12
MATHS
The value of ("lim")(xvec1^-)(1-sqrt(x))...

The value of `("lim")_(xvec1^-)(1-sqrt(x))/((ccos^(-1)x)^2)` is 4 (b) `1/2` (c) 2 (d) `1/4`

A

`1//6`

B

`-1//3`

C

`1//2`

D

1

Text Solution

Verified by Experts

The correct Answer is:
D

We have
`underset(xto1)lim(1-sqrt(x))/((cos^(-1)x)^(2))=underset(xto1)lim((1-sqrt(x))(1+sqrt(x)))/((cos^(-1)x)^(2)(1+sqrt(x)))`
`=underset(xto1)lim(1-x)/((cos^(-1)x)^(2)(1+sqrt(x)))`
`=underset(thetato0)lim(1-costheta)/((1+sqrt(costheta)))`, where `x=costheta`
`[because xto1" or "costhetato1" or "thetato0]`
`underset(thetato0)lim(1-costheta)/(theta^(2))(1)/((1+sqrt(costheta)))`
`=underset(thetato0)lim(2"sin"^(2)(theta)/(2))/(4(theta^(2))/(4))((1)/(1+sqrt(costheta)))`
`=(1)/(2)underset(thetato0)lim(("sin"(theta)/(2))/((theta)/(4)))^(2)(1)/((1+sqrt(costheta)))`
`=(1)/(2)(1)^(2)(1)/((1+1))=(1)/(4)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x->1)(1-sqrt(x))/((cos^(-1)x)^2) is 4 (b) 1/2 (c) 2 (d) 1/4

Evaluate: ("lim")_(xvec0)(2^x-1)/(sqrt(1+x)-1)

Evaluate: ("lim")_(xvec0)(x2^x-x)/(1-cosx)

Evaluate : ("lim")_(xvec1)(2/(1-x^2)+1/(x-1))

("lim")_(xvec1)(1-x)tan(pix)/2=_____

If f(x) is differentiable and strictly increasing function, then the value of ("lim")_(xvec0)(f(x^2)-f(x))/(f(x)-f(0)) is 1 (b) 0 (c) -1 (d) 2

The value of lim_(x->0)(1-1/2^x)(1/(sqrt(tanx+4)-2))

The value of ("lim")_(xvec0)(e^(2x)-cos x-"ln"(1+2x))/(xtanx-sinx)i s 0 (b) 1 (c) 2 (d) 3

Evaluate: ("lim")_(xvec0)1/xsin^(-1)((2x)/(1+x^2))

The value of ("lim")_(xvec2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)i s (a) 1/(8sqrt(3)) (b) 1/(4sqrt(3)) (c) 0 (d) none of these

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. The value of lim(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

    Text Solution

    |

  2. lim(xtooo) (1)/(x+1)tan((pix+1)/(2x+2)) is equal to

    Text Solution

    |

  3. The value of ("lim")(xvec1^-)(1-sqrt(x))/((ccos^(-1)x)^2) is 4 (b) ...

    Text Solution

    |

  4. ("lim")(xvecpi/2)(sin(xcosx)/("cos"(xsinx)i se q u a lto 0 (b) p/2 (...

    Text Solution

    |

  5. lim(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greates...

    Text Solution

    |

  6. Evaluate lim(xto0) (x(e^(x)-1))/(1-cosx) is equal to

    Text Solution

    |

  7. If f(x)=lim(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal...

    Text Solution

    |

  8. lim(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part o...

    Text Solution

    |

  9. The value of lim(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x))...

    Text Solution

    |

  10. ("lim")(x vec 0)(sin(x^2))/(1n(cos(2x^2-x))) is equal to (a) 2 (b) ...

    Text Solution

    |

  11. lim(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  12. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  13. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  14. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  15. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  16. The value of lim(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  17. The value of lim(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

    Text Solution

    |

  18. If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo then lim(xtoa){f(x)}^(g(x))=e^...

    Text Solution

    |

  19. If ("lim")(xvec0)(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, th...

    Text Solution

    |

  20. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |