Home
Class 12
MATHS
lim(xto0) [(1-e^(x))(sinx)/(|x|)] is (wh...

`lim_(xto0) [(1-e^(x))(sinx)/(|x|)]` is (where `[.]` represents the greatest integer function )

A

1

B

2

C

3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{(1 - e^x)(\sin x)}{|x|} \) and find the greatest integer function of the result, we will analyze the behavior of the expression as \( x \) approaches 0 from both the right and the left. ### Step 1: Evaluate the Right-Hand Limit (RHL) We start by considering the limit as \( x \) approaches 0 from the right (denoted as \( 0^+ \)): \[ \lim_{x \to 0^+} \frac{(1 - e^x)(\sin x)}{|x|} = \lim_{x \to 0^+} \frac{(1 - e^x)(\sin x)}{x} \] Here, since \( x \) is positive, \( |x| = x \). ### Step 2: Analyze \( 1 - e^x \) As \( x \to 0^+ \), we can use the Taylor expansion for \( e^x \): \[ e^x \approx 1 + x \quad \text{(for small \( x \))} \] Thus, \[ 1 - e^x \approx 1 - (1 + x) = -x \] ### Step 3: Analyze \( \sin x \) Using the Taylor expansion for \( \sin x \): \[ \sin x \approx x \quad \text{(for small \( x \))} \] ### Step 4: Substitute Back into the Limit Substituting these approximations into the limit: \[ \lim_{x \to 0^+} \frac{(-x)(x)}{x} = \lim_{x \to 0^+} -x = 0 \] ### Step 5: Evaluate the Left-Hand Limit (LHL) Now, we consider the limit as \( x \) approaches 0 from the left (denoted as \( 0^- \)): \[ \lim_{x \to 0^-} \frac{(1 - e^x)(\sin x)}{|x|} = \lim_{x \to 0^-} \frac{(1 - e^x)(\sin x)}{-x} \] Here, since \( x \) is negative, \( |x| = -x \). ### Step 6: Analyze \( 1 - e^x \) Again As \( x \to 0^- \), we still have: \[ 1 - e^x \approx -x \] ### Step 7: Analyze \( \sin x \) For \( \sin x \), it still holds that: \[ \sin x \approx x \] ### Step 8: Substitute Back into the Limit Substituting these approximations into the limit: \[ \lim_{x \to 0^-} \frac{(-x)(x)}{-x} = \lim_{x \to 0^-} x = 0 \] ### Step 9: Conclusion Since both the right-hand limit and the left-hand limit approach 0, we conclude: \[ \lim_{x \to 0} \frac{(1 - e^x)(\sin x)}{|x|} = 0 \] ### Step 10: Apply the Greatest Integer Function The greatest integer function \( [0] \) is: \[ [0] = 0 \] Thus, the final answer is: \[ \boxed{0} \]

To solve the limit \( \lim_{x \to 0} \frac{(1 - e^x)(\sin x)}{|x|} \) and find the greatest integer function of the result, we will analyze the behavior of the expression as \( x \) approaches 0 from both the right and the left. ### Step 1: Evaluate the Right-Hand Limit (RHL) We start by considering the limit as \( x \) approaches 0 from the right (denoted as \( 0^+ \)): \[ \lim_{x \to 0^+} \frac{(1 - e^x)(\sin x)}{|x|} = \lim_{x \to 0^+} \frac{(1 - e^x)(\sin x)}{x} \] Here, since \( x \) is positive, \( |x| = x \). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a) -1 (b) 1 (c) 0 (d) does not exist

The value of lim_(xto0) ([(100x)/(sinx)]+[(99sinx)/(x)]) (where [.] represents the greatest integral function) is

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

lim_(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greatest integer function).

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

Find lim_(xto0) [x]((e^(1//x)-1)/(e^(1//x)+1)), (where [.] represents the greatest integer funciton).

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

The value of lim_(x->0)([(100 x)/(sinx)]+[(99sinx)/x]) (where [.] represents the greatest integral function) is (a) 199 (b) 198 (c) 0 (d) none of these

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

lim_(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greatest integer function) is equal to

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. The value of ("lim")(xvec1^-)(1-sqrt(x))/((ccos^(-1)x)^2) is 4 (b) ...

    Text Solution

    |

  2. ("lim")(xvecpi/2)(sin(xcosx)/("cos"(xsinx)i se q u a lto 0 (b) p/2 (...

    Text Solution

    |

  3. lim(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greates...

    Text Solution

    |

  4. Evaluate lim(xto0) (x(e^(x)-1))/(1-cosx) is equal to

    Text Solution

    |

  5. If f(x)=lim(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal...

    Text Solution

    |

  6. lim(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part o...

    Text Solution

    |

  7. The value of lim(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x))...

    Text Solution

    |

  8. ("lim")(x vec 0)(sin(x^2))/(1n(cos(2x^2-x))) is equal to (a) 2 (b) ...

    Text Solution

    |

  9. lim(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  10. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  11. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  12. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  13. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  14. The value of lim(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  15. The value of lim(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

    Text Solution

    |

  16. If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo then lim(xtoa){f(x)}^(g(x))=e^...

    Text Solution

    |

  17. If ("lim")(xvec0)(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, th...

    Text Solution

    |

  18. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  19. lim(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  20. The value of lim(xto1) (2-x)^(tan((pix)/(2))) is

    Text Solution

    |