Home
Class 12
MATHS
The value of lim(xtooo) ((2^(x^(n)))e^((...

The value of `lim_(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x)))/(x^(n))` (where `n in N`) is

A

`e`

B

`e^(2)`

C

`e^(-1)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \infty} \frac{(2^{x^n}) e^{\frac{1}{x}} - (3^{x^n}) e^{\frac{1}{x}}}{x^n} \] we can follow these steps: ### Step 1: Simplify the expression We can factor out \( e^{\frac{1}{x}} \) from the numerator: \[ = e^{\frac{1}{x}} \cdot \frac{2^{x^n} - 3^{x^n}}{x^n} \] ### Step 2: Analyze the limit of \( e^{\frac{1}{x}} \) As \( x \to \infty \), \( e^{\frac{1}{x}} \) approaches \( e^0 = 1 \). ### Step 3: Focus on the remaining limit Now we need to evaluate: \[ \lim_{x \to \infty} \frac{2^{x^n} - 3^{x^n}}{x^n} \] ### Step 4: Identify the dominant term As \( x \to \infty \), \( 3^{x^n} \) grows faster than \( 2^{x^n} \). Thus, we can rewrite the expression: \[ 2^{x^n} - 3^{x^n} = -3^{x^n} \left(1 - \left(\frac{2}{3}\right)^{x^n}\right) \] ### Step 5: Substitute back into the limit Now substitute this back into the limit: \[ \lim_{x \to \infty} \frac{-3^{x^n} \left(1 - \left(\frac{2}{3}\right)^{x^n}\right)}{x^n} \] ### Step 6: Analyze the limit further As \( x \to \infty \), \( \left(\frac{2}{3}\right)^{x^n} \to 0 \), so: \[ 1 - \left(\frac{2}{3}\right)^{x^n} \to 1 \] Thus, the limit simplifies to: \[ \lim_{x \to \infty} \frac{-3^{x^n}}{x^n} \] ### Step 7: Evaluate the limit Since \( 3^{x^n} \) grows much faster than \( x^n \), this limit approaches \( -\infty \). ### Step 8: Combine results Now we combine this with our earlier result for \( e^{\frac{1}{x}} \): \[ \lim_{x \to \infty} e^{\frac{1}{x}} \cdot \left(-\infty\right) = -\infty \] ### Conclusion Thus, the final value of the limit is: \[ \lim_{x \to \infty} \frac{(2^{x^n}) e^{\frac{1}{x}} - (3^{x^n}) e^{\frac{1}{x}}}{x^n} = -\infty \]

To solve the limit \[ \lim_{x \to \infty} \frac{(2^{x^n}) e^{\frac{1}{x}} - (3^{x^n}) e^{\frac{1}{x}}}{x^n} \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x->oo)((2^(x^n))^(1/e^x)-(3^(x^n))^(1/e^x))/(x^n) (where n in N) is (a) logn(2/3) (b) 0 (c) nlogn(2/3) (d) none of defined

The value of lim_(x->oo)(1+1/x^n)^x,n>0 is

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

The value of lim_(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^((n-1)//n))/(n)] is

The value of lim_(xrarr1){(x^n-1)/(n(x-1))}^((1)/(x-1)) , is

lim_(x->oo)(1-x+x.e^(1/n))^n

The value of lim_(nrarroo)((e^((1)/(n)))/(n^(2))+(2e^((2)/(n)))/(n^(2))+(3e^((3)/(n)))/(n^(2))+…+(2e^(2))/(n)) is

Evaluate lim_(xto1)(x+x^(2)+…….+x^(n)-n)/(x-1)

The value o lim_(xtooo)(1/(n^(3)))([1^(2)x+1^(2)]+[2^(2)x+2^(2)]+…..+[n^(2)x+n^(2)]) is where [.] denotes the greatest integer function.

The value of lim_(xtooo) {(1)/(3)+(2)/(21)+(3)/(91)+...+(n)/(n^4+n^2+1)} , is

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. If f(x)=lim(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal...

    Text Solution

    |

  2. lim(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part o...

    Text Solution

    |

  3. The value of lim(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x))...

    Text Solution

    |

  4. ("lim")(x vec 0)(sin(x^2))/(1n(cos(2x^2-x))) is equal to (a) 2 (b) ...

    Text Solution

    |

  5. lim(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  6. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  7. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  8. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  9. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  10. The value of lim(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  11. The value of lim(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

    Text Solution

    |

  12. If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo then lim(xtoa){f(x)}^(g(x))=e^...

    Text Solution

    |

  13. If ("lim")(xvec0)(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, th...

    Text Solution

    |

  14. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  15. lim(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  16. The value of lim(xto1) (2-x)^(tan((pix)/(2))) is

    Text Solution

    |

  17. The value of lim(mtooo) ("cos"(x)/(m))^(m) is

    Text Solution

    |

  18. lim(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

    Text Solution

    |

  19. lim(ntooo) {((n)/(n+1))^(alpha)+"sin"(1)/(n)}^(n) (where alphainQ) is ...

    Text Solution

    |

  20. lim(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x) is

    Text Solution

    |