Home
Class 12
MATHS
The value of lim(xtooo) (root(3)(x^(3)+2...

The value of `lim_(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x))` is

A

`e`

B

`e^(2)`

C

`sqrt€`

D

`e^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \( \lim_{x \to \infty} \left( \sqrt[3]{x^3 + 2x^2} - \sqrt{x^2 + x} \right) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ \lim_{x \to \infty} \left( \sqrt[3]{x^3 + 2x^2} - \sqrt{x^2 + x} \right) \] ### Step 2: Factor out the highest power of \(x\) For the cube root term, factor out \(x^3\): \[ \sqrt[3]{x^3 + 2x^2} = \sqrt[3]{x^3(1 + \frac{2}{x})} = x \sqrt[3]{1 + \frac{2}{x}} \] For the square root term, factor out \(x^2\): \[ \sqrt{x^2 + x} = \sqrt{x^2(1 + \frac{1}{x})} = x \sqrt{1 + \frac{1}{x}} \] ### Step 3: Substitute back into the limit Now substitute these back into the limit: \[ \lim_{x \to \infty} \left( x \sqrt[3]{1 + \frac{2}{x}} - x \sqrt{1 + \frac{1}{x}} \right) \] ### Step 4: Factor out \(x\) Factor out \(x\): \[ \lim_{x \to \infty} x \left( \sqrt[3]{1 + \frac{2}{x}} - \sqrt{1 + \frac{1}{x}} \right) \] ### Step 5: Analyze the limit as \(x \to \infty\) As \(x\) approaches infinity, both \(\frac{2}{x}\) and \(\frac{1}{x}\) approach 0. Thus: \[ \sqrt[3]{1 + \frac{2}{x}} \to 1 \quad \text{and} \quad \sqrt{1 + \frac{1}{x}} \to 1 \] So the expression inside the limit becomes: \[ \sqrt[3]{1 + 0} - \sqrt{1 + 0} = 1 - 1 = 0 \] ### Step 6: Apply L'Hôpital's Rule Since we have an indeterminate form \(0 \cdot \infty\), we can rewrite it as: \[ \lim_{x \to \infty} \frac{\sqrt[3]{1 + \frac{2}{x}} - \sqrt{1 + \frac{1}{x}}}{\frac{1}{x}} \] Now, we can apply L'Hôpital's Rule. ### Step 7: Differentiate the numerator and denominator Differentiate the numerator: 1. For \(\sqrt[3]{1 + \frac{2}{x}}\), use the chain rule. 2. For \(\sqrt{1 + \frac{1}{x}}\), also use the chain rule. After differentiating and simplifying, we find the limit. ### Step 8: Evaluate the limit After simplification, we find: \[ \lim_{x \to \infty} \left( \frac{2/3 \cdot x^{-4/3} - 1/2 \cdot x^{-3/2}}{-x^{-2}} \right) \] This will yield a finite value. ### Final Result After evaluating, we find that the limit converges to: \[ \frac{1}{6} \]

To find the limit \( \lim_{x \to \infty} \left( \sqrt[3]{x^3 + 2x^2} - \sqrt{x^2 + x} \right) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ \lim_{x \to \infty} \left( \sqrt[3]{x^3 + 2x^2} - \sqrt{x^2 + x} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) equals

Evaluate lim_(xtooo)((x-3)/(x+2))^(x)

Evaluate lim_(xtooo)((x-3)/(x+2))^(x)

The value of lim_(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2)) , is

The value of lim_(xto2) (((x^(3)-4x)/(x^(3)-8))^(-1)-((x+sqrt(2x))/(x-2)-(sqrt(2))/(sqrt(x)-sqrt(2)))^(-1))" is "

The value of lim_(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

Evaluate lim_(xtooo) (root(3)((x+1)(x+2)(x+3))-x).

lim_(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)

The value of lim_(xtooo) ((3x-4)/(3x+2))^(((x+1)/3)) is

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  2. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  3. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  4. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  5. The value of lim(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  6. The value of lim(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

    Text Solution

    |

  7. If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo then lim(xtoa){f(x)}^(g(x))=e^...

    Text Solution

    |

  8. If ("lim")(xvec0)(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, th...

    Text Solution

    |

  9. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  10. lim(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  11. The value of lim(xto1) (2-x)^(tan((pix)/(2))) is

    Text Solution

    |

  12. The value of lim(mtooo) ("cos"(x)/(m))^(m) is

    Text Solution

    |

  13. lim(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

    Text Solution

    |

  14. lim(ntooo) {((n)/(n+1))^(alpha)+"sin"(1)/(n)}^(n) (where alphainQ) is ...

    Text Solution

    |

  15. lim(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x) is

    Text Solution

    |

  16. lim(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x)

    Text Solution

    |

  17. The value of lim(x to 1) ((p)/(1-x^(p))-(q)/(1-xq)),p,q,inN, equals

    Text Solution

    |

  18. lim(xtooo) (x(logx)^(3))/(1+x+x^(2)) equals

    Text Solution

    |

  19. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  20. The value of lim(ntooo)(e^(n))/((1+(1)/(n))^(n^(2)))is (a) -1 (b) 0 ...

    Text Solution

    |