Home
Class 12
MATHS
If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo ...

If `lim_(xtoa)f(x)=1` and `lim_(xtoa)g(x)=oo` then `lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)xg(x))`
`lim_(xto0)((x-1+cosx)/x)^(1/x)` is equal to

A

`f(1+0)=-1,f(1-0)=0`

B

`f(1+0)=0=f(1-0)`

C

`underset(xto1)limf(x)` exists

D

`underset(xto1)f(x)` does not exist

Text Solution

Verified by Experts

The correct Answer is:
B

`cos(tanx)-cosx=2sin((x+tanx)/(2))sin((x-tanx)/(2))`
or `underset(xto0)lim(cos(tanx)-cosx)/(x^(4))`
`=underset(xto0)lim(2sin((x+tanx)/(2))sin((x-tanx)/(2)))/(x^(4))`
`=underset(xto0)lim(2sin((x+tanx)/(2))sin((x-tanx)/(2)))/(x^(4)((x+tanx)/(2))((x-tanx)/(2)))((x^(2)-tan^(2)x)/(4))`
`=(1)/(2)underset(xto0)lim(x^(2)-tan^(2)x)/(x^(4))`
`=(1)/(2)underset(xto0)lim(x^(2)-(x+(x^(3))/(3)+(2)/(15)x^(5)+...)^(2))/(x^(4))`
`=(1)/(2)underset(xto0)lim(1)/(x^(2))(1-(1+(x^(2))/(3)+(2)/(15)x^(4)+...)^(2))=-(1)/(3)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((a^(x)+b^(x)+c^(x))/3)^(2/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

lim_(xto0)((e^(x)-1)/x)^(1//x)

lim_(x->0)(x(e^x-1))/(1-cosx) is equal to

lim_(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

lim_(x->0) ((1+x)^(1/x)-e)/x is equal to

lim_(xto0)((1-cosx)(3+cosx))/(x tan 4x) is equal to

lim_(xto0^(-))(-In({x}+|[x]|))^({x}) is equal to

Find lim_(xto0)(cot^(-1)(1/x))/x

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  2. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  3. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  4. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  5. The value of lim(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  6. The value of lim(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

    Text Solution

    |

  7. If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo then lim(xtoa){f(x)}^(g(x))=e^...

    Text Solution

    |

  8. If ("lim")(xvec0)(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, th...

    Text Solution

    |

  9. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  10. lim(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  11. The value of lim(xto1) (2-x)^(tan((pix)/(2))) is

    Text Solution

    |

  12. The value of lim(mtooo) ("cos"(x)/(m))^(m) is

    Text Solution

    |

  13. lim(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

    Text Solution

    |

  14. lim(ntooo) {((n)/(n+1))^(alpha)+"sin"(1)/(n)}^(n) (where alphainQ) is ...

    Text Solution

    |

  15. lim(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x) is

    Text Solution

    |

  16. lim(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x)

    Text Solution

    |

  17. The value of lim(x to 1) ((p)/(1-x^(p))-(q)/(1-xq)),p,q,inN, equals

    Text Solution

    |

  18. lim(xtooo) (x(logx)^(3))/(1+x+x^(2)) equals

    Text Solution

    |

  19. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  20. The value of lim(ntooo)(e^(n))/((1+(1)/(n))^(n^(2)))is (a) -1 (b) 0 ...

    Text Solution

    |