Home
Class 12
MATHS
The value of lim(xto1) (2-x)^(tan((pix)/...

The value of `lim_(xto1) (2-x)^(tan((pix)/(2)))` is

A

`a=1//4`

B

`b=3//4`

C

`L=-1//32`

D

`L=1//32`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \( \lim_{x \to 1} (2 - x)^{\tan\left(\frac{\pi x}{2}\right)} \), we can follow these steps: ### Step 1: Identify the form of the limit First, we substitute \( x = 1 \) into the expression: \[ 2 - x \to 2 - 1 = 1 \] \[ \tan\left(\frac{\pi x}{2}\right) \to \tan\left(\frac{\pi \cdot 1}{2}\right) = \tan\left(\frac{\pi}{2}\right) \to \infty \] Thus, we have the form \( 1^{\infty} \), which is an indeterminate form. **Hint**: Recognize that \( 1^{\infty} \) is an indeterminate form, and we need to manipulate the expression to resolve it. ### Step 2: Rewrite the limit using exponential form We can rewrite the limit in exponential form: \[ (2 - x)^{\tan\left(\frac{\pi x}{2}\right)} = e^{\tan\left(\frac{\pi x}{2}\right) \ln(2 - x)} \] So we need to evaluate: \[ \lim_{x \to 1} \tan\left(\frac{\pi x}{2}\right) \ln(2 - x) \] **Hint**: Use the property of logarithms to express the limit in a more manageable form. ### Step 3: Evaluate the limit of the exponent Now we need to find: \[ \lim_{x \to 1} \tan\left(\frac{\pi x}{2}\right) \ln(2 - x) \] As \( x \to 1 \): - \( \ln(2 - x) \to \ln(1) = 0 \) - \( \tan\left(\frac{\pi x}{2}\right) \to \infty \) This gives us the form \( \infty \cdot 0 \), which is also indeterminate. We can rewrite it as: \[ \lim_{x \to 1} \frac{\ln(2 - x)}{\cot\left(\frac{\pi x}{2}\right)} \] **Hint**: Convert the product into a quotient to apply L'Hôpital's rule. ### Step 4: Apply L'Hôpital's Rule Now we apply L'Hôpital's Rule, since both the numerator and denominator approach 0 as \( x \to 1 \): \[ \text{Differentiate the numerator: } \frac{d}{dx}[\ln(2 - x)] = -\frac{1}{2 - x} \] \[ \text{Differentiate the denominator: } \frac{d}{dx}[\cot\left(\frac{\pi x}{2}\right)] = -\frac{\pi}{2} \csc^2\left(\frac{\pi x}{2}\right) \] Thus, we have: \[ \lim_{x \to 1} \frac{-\frac{1}{2 - x}}{-\frac{\pi}{2} \csc^2\left(\frac{\pi x}{2}\right)} = \lim_{x \to 1} \frac{2}{\pi (2 - x) \csc^2\left(\frac{\pi x}{2}\right)} \] **Hint**: Remember to evaluate the limit as \( x \to 1 \) carefully. ### Step 5: Evaluate the limit As \( x \to 1 \): - \( 2 - x \to 1 \) - \( \csc^2\left(\frac{\pi x}{2}\right) \to \csc^2\left(\frac{\pi}{2}\right) \to 1 \) Thus, we get: \[ \lim_{x \to 1} \frac{2}{\pi (1)(1)} = \frac{2}{\pi} \] ### Step 6: Final result Now substituting back into the exponential: \[ \lim_{x \to 1} (2 - x)^{\tan\left(\frac{\pi x}{2}\right)} = e^{\frac{2}{\pi}} \] **Final Answer**: \[ \lim_{x \to 1} (2 - x)^{\tan\left(\frac{\pi x}{2}\right)} = e^{\frac{2}{\pi}} \]

To find the limit \( \lim_{x \to 1} (2 - x)^{\tan\left(\frac{\pi x}{2}\right)} \), we can follow these steps: ### Step 1: Identify the form of the limit First, we substitute \( x = 1 \) into the expression: \[ 2 - x \to 2 - 1 = 1 \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x->1)(2-x)^(tan((pix)/2)) is e^(-2/pi) (b) e^(1/pi) (c) e^(2/pi) (d) e^(-1/pi)

The value of lim_(x rarr 1)(2-x)^(tan((pix)/2)) is (a) e^(-2/pi) (b) e^(1/pi) (c) e^(2/pi) (d) e^(-1/pi)

Evaluate lim_(xto1) (1-x)"tan"(pix)/(2).

Evaluate lim_(xtoa)(2-a/x)^("tan"(pix)/(2a)

The value of lim_(xto1)(tan((pi)/4+logx))^(1/(logx)) is equal to

The value of lim_(xto 0)(e-(1+x)^(1//x))/(tanx) is

lim_(xrarr1)(1-x)tan((pix)/2) is equal to

The value of lim_(xto0)(1/(x^(2))-cotx) is

The value of lim_(xto0)(x cosx-log(1+x))/(x^(2)) is

If f(x)={("sin"(pix)/2,, x lt1),(4x-3,,1lexle2),(log2(2x^(2)-4),,2ltxlt3):} then value of lim_(xto1)f(x)+lim_(xto2^(+))f(x) is

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  2. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  3. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  4. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  5. The value of lim(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  6. The value of lim(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

    Text Solution

    |

  7. If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo then lim(xtoa){f(x)}^(g(x))=e^...

    Text Solution

    |

  8. If ("lim")(xvec0)(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, th...

    Text Solution

    |

  9. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  10. lim(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  11. The value of lim(xto1) (2-x)^(tan((pix)/(2))) is

    Text Solution

    |

  12. The value of lim(mtooo) ("cos"(x)/(m))^(m) is

    Text Solution

    |

  13. lim(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

    Text Solution

    |

  14. lim(ntooo) {((n)/(n+1))^(alpha)+"sin"(1)/(n)}^(n) (where alphainQ) is ...

    Text Solution

    |

  15. lim(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x) is

    Text Solution

    |

  16. lim(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x)

    Text Solution

    |

  17. The value of lim(x to 1) ((p)/(1-x^(p))-(q)/(1-xq)),p,q,inN, equals

    Text Solution

    |

  18. lim(xtooo) (x(logx)^(3))/(1+x+x^(2)) equals

    Text Solution

    |

  19. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  20. The value of lim(ntooo)(e^(n))/((1+(1)/(n))^(n^(2)))is (a) -1 (b) 0 ...

    Text Solution

    |