Home
Class 12
MATHS
The value of lim(mtooo) ("cos"(x)/(m))^(...

The value of `lim_(mtooo) ("cos"(x)/(m))^(m)` is

A

`underset(xtooo)lim(log_(e)x)/({x})=oo`

B

`underset(xto2^(+))lim(x)/(x^(2)-x-2)=oo`

C

`underset(xto-1^(-))lim(x)/(x^(2)-x-2)=oo`

D

`underset(xtooo)lim(log_(0.5)x)/({x})=oo`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{m \to \infty} \left( \frac{\cos x}{m} \right)^m \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ \lim_{m \to \infty} \left( \frac{\cos x}{m} \right)^m \] As \( m \) approaches infinity, \( \frac{\cos x}{m} \) approaches \( 0 \) since \( m \) grows without bound. Therefore, we have a form that resembles \( 0^m \), which is indeterminate. ### Step 2: Transform the limit We can rewrite the expression using the exponential function: \[ \left( \frac{\cos x}{m} \right)^m = e^{m \ln\left(\frac{\cos x}{m}\right)} = e^{m (\ln(\cos x) - \ln(m))} \] Thus, we need to evaluate: \[ \lim_{m \to \infty} m (\ln(\cos x) - \ln(m)) \] ### Step 3: Analyze the limit As \( m \to \infty \): - \( \ln(m) \) approaches infinity. - \( \ln(\cos x) \) is a constant (assuming \( \cos x \neq 0 \)). Thus, we can simplify: \[ m (\ln(\cos x) - \ln(m)) = m \ln(\cos x) - m \ln(m) \] The term \( -m \ln(m) \) will dominate as \( m \to \infty \). ### Step 4: Evaluate the limit We can express the limit as: \[ \lim_{m \to \infty} (m \ln(\cos x) - m \ln(m)) = \lim_{m \to \infty} m \left(\ln(\cos x) - \ln(m)\right) \] Since \( \ln(m) \) grows without bound, the entire limit approaches \( -\infty \). ### Step 5: Conclude the limit Thus, we have: \[ \lim_{m \to \infty} m (\ln(\cos x) - \ln(m)) = -\infty \] This implies: \[ e^{-\infty} = 0 \] ### Final Answer Therefore, the value of the limit is: \[ \lim_{m \to \infty} \left( \frac{\cos x}{m} \right)^m = 0 \] ---

To solve the limit \( \lim_{m \to \infty} \left( \frac{\cos x}{m} \right)^m \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ \lim_{m \to \infty} \left( \frac{\cos x}{m} \right)^m \] As \( m \) approaches infinity, \( \frac{\cos x}{m} \) approaches \( 0 \) since \( m \) grows without bound. Therefore, we have a form that resembles \( 0^m \), which is indeterminate. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(m->oo)(cos(x/m))^("m") is 1 (b) e (c) e^(-1) (d) none of these

The value of : lim_(x to 0) (cos x)^(1/x) is

The value of lim_(xrarroo) x^(2)(1-cos.(1)/(x)) is

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

The value of lim_(xto pi) (1+cos^(3)x)/(sin^(2)x)" is "

lim_(x to 0) (cos x)/(pi-x)

The value of lim_(x to 0) (e^("sin"^(3) x) - cos (("sin" x)^(3)))/(x^(3)) is ____

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  2. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  3. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  4. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  5. The value of lim(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  6. The value of lim(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

    Text Solution

    |

  7. If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo then lim(xtoa){f(x)}^(g(x))=e^...

    Text Solution

    |

  8. If ("lim")(xvec0)(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, th...

    Text Solution

    |

  9. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  10. lim(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  11. The value of lim(xto1) (2-x)^(tan((pix)/(2))) is

    Text Solution

    |

  12. The value of lim(mtooo) ("cos"(x)/(m))^(m) is

    Text Solution

    |

  13. lim(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

    Text Solution

    |

  14. lim(ntooo) {((n)/(n+1))^(alpha)+"sin"(1)/(n)}^(n) (where alphainQ) is ...

    Text Solution

    |

  15. lim(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x) is

    Text Solution

    |

  16. lim(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x)

    Text Solution

    |

  17. The value of lim(x to 1) ((p)/(1-x^(p))-(q)/(1-xq)),p,q,inN, equals

    Text Solution

    |

  18. lim(xtooo) (x(logx)^(3))/(1+x+x^(2)) equals

    Text Solution

    |

  19. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  20. The value of lim(ntooo)(e^(n))/((1+(1)/(n))^(n^(2)))is (a) -1 (b) 0 ...

    Text Solution

    |