Home
Class 12
MATHS
lim(ntooo) {((n)/(n+1))^(alpha)+"sin"(1)...

`lim_(ntooo) {((n)/(n+1))^(alpha)+"sin"(1)/(n)}^(n)` (where `alphainQ`) is equal to

A

`a=1//3,b=1`

B

`a=1,b=-1`

C

`a=9,b=-9`

D

`a=2,b=2//3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( L = \lim_{n \to \infty} \left( \left( \frac{n}{n+1} \right)^{\alpha} + \sin\left(\frac{1}{n}\right) \right)^{n} \), we will follow these steps: ### Step 1: Rewrite the limit We start by rewriting the limit in a more manageable form. We can express \( L \) as: \[ L = \lim_{n \to \infty} \left( \left( \frac{n}{n+1} \right)^{\alpha} + \sin\left(\frac{1}{n}\right) \right)^{n} \] ### Step 2: Analyze the components As \( n \to \infty \): - \( \frac{n}{n+1} \to 1 \) - \( \sin\left(\frac{1}{n}\right) \to \frac{1}{n} \) (using the small angle approximation) Thus, we can approximate: \[ \left( \frac{n}{n+1} \right)^{\alpha} \to 1^{\alpha} = 1 \] and \[ \sin\left(\frac{1}{n}\right) \to \frac{1}{n} \] ### Step 3: Combine the approximations Now, substituting these approximations back into the limit gives: \[ L = \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^{n} \] ### Step 4: Recognize the limit form The expression \( \left( 1 + \frac{1}{n} \right)^{n} \) is known to converge to \( e \) as \( n \to \infty \). Therefore: \[ L = e \] ### Step 5: Final expression Thus, the limit we are looking for is: \[ L = e^{1 - \alpha} \] ### Final Answer The final result is: \[ \lim_{n \to \infty} \left( \left( \frac{n}{n+1} \right)^{\alpha} + \sin\left(\frac{1}{n}\right) \right)^{n} = e^{1 - \alpha} \]

To solve the limit \( L = \lim_{n \to \infty} \left( \left( \frac{n}{n+1} \right)^{\alpha} + \sin\left(\frac{1}{n}\right) \right)^{n} \), we will follow these steps: ### Step 1: Rewrite the limit We start by rewriting the limit in a more manageable form. We can express \( L \) as: \[ L = \lim_{n \to \infty} \left( \left( \frac{n}{n+1} \right)^{\alpha} + \sin\left(\frac{1}{n}\right) \right)^{n} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

("lim")_(n vec oo)"{"(n/(n+1))^(alpha)+sin (1/n)]^n (when alpha in Q ) is equal to (a) e^(-alpha) (b) -alpha (c) e^(1-alpha) (d) e^(1+alpha)

lim_(n to oo)(n!)/((n+1)!-n!)

lim_(ntooo) ((n!)^(1//n))/(n) equals

lim_(n to oo) {(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(3n)}=

lim_(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix) , where n=100 ,is equal to

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

Evaluate lim_(ntooo) (n^(p)sin^(2)(n!))/(n+1),"wher "0ltplt1.

Evaluate lim_(ntooo) (4^(n)+5^(n))^(1//n)

Evaluate lim_(ntooo)ncos((pi)/(4n))sin((pi)/(4n)).

If A=[{:(1,a),(0,1):}] then A^(n) (where n in N ) is equal to

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  2. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  3. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  4. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  5. The value of lim(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  6. The value of lim(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

    Text Solution

    |

  7. If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo then lim(xtoa){f(x)}^(g(x))=e^...

    Text Solution

    |

  8. If ("lim")(xvec0)(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, th...

    Text Solution

    |

  9. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  10. lim(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  11. The value of lim(xto1) (2-x)^(tan((pix)/(2))) is

    Text Solution

    |

  12. The value of lim(mtooo) ("cos"(x)/(m))^(m) is

    Text Solution

    |

  13. lim(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

    Text Solution

    |

  14. lim(ntooo) {((n)/(n+1))^(alpha)+"sin"(1)/(n)}^(n) (where alphainQ) is ...

    Text Solution

    |

  15. lim(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x) is

    Text Solution

    |

  16. lim(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x)

    Text Solution

    |

  17. The value of lim(x to 1) ((p)/(1-x^(p))-(q)/(1-xq)),p,q,inN, equals

    Text Solution

    |

  18. lim(xtooo) (x(logx)^(3))/(1+x+x^(2)) equals

    Text Solution

    |

  19. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  20. The value of lim(ntooo)(e^(n))/((1+(1)/(n))^(n^(2)))is (a) -1 (b) 0 ...

    Text Solution

    |