Home
Class 12
MATHS
lim(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+...

`lim_(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x)` is

A

limit does not exist when `a=pi//6`

B

`L=-1` when `a=pi`

C

`L=1` when `a=pi//2`

D

`L=1` when `a=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left[ \frac{e}{1-e} \left( \frac{1}{e} - \frac{x}{1+x} \right) \right]^x \), we will follow these steps: ### Step 1: Simplify the expression inside the limit We start with the expression inside the limit: \[ \frac{1}{e} - \frac{x}{1+x} \] To combine these fractions, we find a common denominator: \[ \frac{1}{e} - \frac{x}{1+x} = \frac{(1+x) - ex}{e(1+x)} = \frac{1 + x - ex}{e(1+x)} \] ### Step 2: Substitute back into the limit Now substituting this back into our limit, we have: \[ \lim_{x \to 0} \left[ \frac{e}{1-e} \cdot \frac{1 + x - ex}{e(1+x)} \right]^x \] This simplifies to: \[ \lim_{x \to 0} \left[ \frac{1 + x - ex}{(1-e)(1+x)} \right]^x \] ### Step 3: Analyze the limit as \( x \to 0 \) As \( x \to 0 \), we can evaluate the expression inside the limit: \[ 1 + x - ex \to 1 \quad \text{and} \quad 1 + x \to 1 \] Thus, the expression simplifies to: \[ \frac{1 + 0 - 0}{(1-e)(1+0)} = \frac{1}{1-e} \] ### Step 4: Substitute this back into the limit Now we have: \[ \lim_{x \to 0} \left[ \frac{1}{(1-e)} \right]^x \] ### Step 5: Evaluate the limit Since \( \frac{1}{(1-e)} \) is a constant, we can evaluate the limit: \[ \lim_{x \to 0} \left[ \frac{1}{(1-e)} \right]^x = 1 \] This is because any constant raised to the power of \( 0 \) is \( 1 \). ### Final Result Thus, the limit is: \[ \boxed{1} \]

To solve the limit \( \lim_{x \to 0} \left[ \frac{e}{1-e} \left( \frac{1}{e} - \frac{x}{1+x} \right) \right]^x \), we will follow these steps: ### Step 1: Simplify the expression inside the limit We start with the expression inside the limit: \[ \frac{1}{e} - \frac{x}{1+x} ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

("lim")_(xvecoo)[(e/(1-e))(1/e-x/(1+x))]^xi s e^((1-e)) (b) e^(((1-e)/e)) (c) e^((e/(1-e))) (d) e^(((1+e)/e))

The value of lim_(xrarroo)[(e)/((1+(1)/(x))^(x))]^(x) is equal to

lim_(xto0)((e^(x)-1)/x)^(1//x)

lim_(x->e) (lnx-1)/(x-e)

The value of lim_(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x)))/(x^(n)) (where n in N ) is

Evaluate lim_(xto0) ((1+x)^(1//x)-e+(1)/(2)es)/(x^(2)) .

lim_(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

lim_(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

lim_(xrarroo) [x-log_(e)((e^(x)+e^(-x))/(2))]=

Evaluate lim_(xtooo) x^((1)/(x)).

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  2. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  3. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  4. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  5. The value of lim(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  6. The value of lim(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

    Text Solution

    |

  7. If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo then lim(xtoa){f(x)}^(g(x))=e^...

    Text Solution

    |

  8. If ("lim")(xvec0)(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, th...

    Text Solution

    |

  9. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  10. lim(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  11. The value of lim(xto1) (2-x)^(tan((pix)/(2))) is

    Text Solution

    |

  12. The value of lim(mtooo) ("cos"(x)/(m))^(m) is

    Text Solution

    |

  13. lim(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

    Text Solution

    |

  14. lim(ntooo) {((n)/(n+1))^(alpha)+"sin"(1)/(n)}^(n) (where alphainQ) is ...

    Text Solution

    |

  15. lim(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x) is

    Text Solution

    |

  16. lim(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x)

    Text Solution

    |

  17. The value of lim(x to 1) ((p)/(1-x^(p))-(q)/(1-xq)),p,q,inN, equals

    Text Solution

    |

  18. lim(xtooo) (x(logx)^(3))/(1+x+x^(2)) equals

    Text Solution

    |

  19. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  20. The value of lim(ntooo)(e^(n))/((1+(1)/(n))^(n^(2)))is (a) -1 (b) 0 ...

    Text Solution

    |