Home
Class 12
MATHS
lim(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x...

`lim_(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x)`

A

`f(1^(+))+f(1^(-))=0`

B

`f(1^(+))+f(1^(-))+f(1)=3//2`

C

`f(-1^(+))+f(-1^(-))=-1`

D

`f(1^(+))+f(-1^(-))=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \left( \frac{1^x + 2^x + 3^x + \ldots + n^x}{n} \right)^{\frac{1}{x}}, \] we will follow these steps: ### Step 1: Analyze the expression as \( x \to 0 \) As \( x \) approaches 0, we know that \( a^x \) approaches 1 for any positive number \( a \). Therefore, each term \( k^x \) (where \( k = 1, 2, \ldots, n \)) approaches 1: \[ 1^x \to 1, \quad 2^x \to 1, \quad \ldots, \quad n^x \to 1. \] Thus, the sum \( 1^x + 2^x + 3^x + \ldots + n^x \) approaches \( n \) as \( x \to 0 \). ### Step 2: Substitute into the limit Substituting this result into the limit gives us: \[ \frac{1^x + 2^x + 3^x + \ldots + n^x}{n} \to \frac{n}{n} = 1. \] So, we have: \[ \lim_{x \to 0} \left( \frac{1^x + 2^x + 3^x + \ldots + n^x}{n} \right)^{\frac{1}{x}} = \lim_{x \to 0} 1^{\frac{1}{x}}. \] ### Step 3: Recognize the indeterminate form The expression \( 1^{\frac{1}{x}} \) is an indeterminate form of type \( 1^\infty \). To resolve this, we can use the exponential limit transformation: \[ \lim_{x \to 0} a^{b} = e^{\lim_{x \to 0} (b \cdot \ln a)} \] where \( a = \frac{1^x + 2^x + \ldots + n^x}{n} \) and \( b = \frac{1}{x} \). ### Step 4: Rewrite the limit using logarithms We can rewrite our limit as: \[ \lim_{x \to 0} \frac{1}{x} \ln \left( \frac{1^x + 2^x + \ldots + n^x}{n} \right). \] ### Step 5: Expand using Taylor series Using the Taylor expansion for \( k^x \) around \( x = 0 \): \[ k^x = e^{x \ln k} \approx 1 + x \ln k \quad \text{for small } x. \] Thus, \[ 1^x + 2^x + \ldots + n^x \approx n + x(\ln 1 + \ln 2 + \ldots + \ln n) = n + x \ln(n!). \] ### Step 6: Substitute back into the limit Now substituting back, we have: \[ \frac{1^x + 2^x + \ldots + n^x}{n} \approx 1 + \frac{x \ln(n!)}{n}. \] Taking the logarithm: \[ \ln \left( \frac{1^x + 2^x + \ldots + n^x}{n} \right) \approx \frac{x \ln(n!)}{n}. \] ### Step 7: Final limit calculation Now substituting this back into our limit gives: \[ \lim_{x \to 0} \frac{1}{x} \cdot \frac{x \ln(n!)}{n} = \frac{\ln(n!)}{n}. \] Thus, we have: \[ \lim_{x \to 0} \left( \frac{1^x + 2^x + \ldots + n^x}{n} \right)^{\frac{1}{x}} = e^{\frac{\ln(n!)}{n}} = (n!)^{\frac{1}{n}}. \] ### Final Answer Therefore, the final result is: \[ \lim_{x \to 0} \left( \frac{1^x + 2^x + 3^x + \ldots + n^x}{n} \right)^{\frac{1}{x}} = (n!)^{\frac{1}{n}}. \]

To solve the limit \[ \lim_{x \to 0} \left( \frac{1^x + 2^x + 3^x + \ldots + n^x}{n} \right)^{\frac{1}{x}}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x->0)((1^x+2^x+...........+n^x)/n)^(1/x) is equal to

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

lim_(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal to

The value of lim_(x->oo)((2^(x^n))^(1/e^x)-(3^(x^n))^(1/e^x))/(x^n) (where n in N) is (a) logn(2/3) (b) 0 (c) nlogn(2/3) (d) none of defined

lim_(x rarr 0)((5x^2+1)/(3x^2+1))^(1//x^2)

If lim_(x rarr 1)((x+x^2+x^3+....+x^n-n)/(x-1))=820 , then find n.

The value of lim_(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x)))/(x^(n)) (where n in N ) is

If f(x) = lim_(n->oo) tan^(-1) (4n^2(1-cos(x/n))) and g(x) = lim_(n->oo) n^2/2 ln cos(2x/n) then lim_(x->0) (e^(-2g(x)) -e^(f(x)))/(x^6) equals

lim_(x->oo)(1-x+x.e^(1/n))^n

f (x) = lim _(x to oo) (x ^(2) + 2 (x+1)^(2n))/((x+1) ^(2n+1) + x^(2) +1),n in N and g (x) =tan ((1)/(2)sin ^(-1)((2f (x))/(1+f ^(2) (x)))), then lim_(x to -3) ((x ^(2) +4x +3))/(sin (x+3) g (x)) is equal to:

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  2. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  3. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  4. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  5. The value of lim(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  6. The value of lim(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

    Text Solution

    |

  7. If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo then lim(xtoa){f(x)}^(g(x))=e^...

    Text Solution

    |

  8. If ("lim")(xvec0)(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, th...

    Text Solution

    |

  9. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  10. lim(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  11. The value of lim(xto1) (2-x)^(tan((pix)/(2))) is

    Text Solution

    |

  12. The value of lim(mtooo) ("cos"(x)/(m))^(m) is

    Text Solution

    |

  13. lim(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

    Text Solution

    |

  14. lim(ntooo) {((n)/(n+1))^(alpha)+"sin"(1)/(n)}^(n) (where alphainQ) is ...

    Text Solution

    |

  15. lim(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x) is

    Text Solution

    |

  16. lim(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x)

    Text Solution

    |

  17. The value of lim(x to 1) ((p)/(1-x^(p))-(q)/(1-xq)),p,q,inN, equals

    Text Solution

    |

  18. lim(xtooo) (x(logx)^(3))/(1+x+x^(2)) equals

    Text Solution

    |

  19. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  20. The value of lim(ntooo)(e^(n))/((1+(1)/(n))^(n^(2)))is (a) -1 (b) 0 ...

    Text Solution

    |