Home
Class 12
MATHS
The value of lim(x to 1) ((p)/(1-x^(p))-...

The value of `lim_(x to 1) ((p)/(1-x^(p))-(q)/(1-xq)),p,q,inN,` equals

A

`-(3)/(4)`

B

0 if n is even

C

`-(3)/(4)` if n is odd

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{x \to 1} \left( \frac{p}{1 - x^p} - \frac{q}{1 - x^q} \right) \] we can follow these steps: ### Step 1: Combine the fractions We start by finding a common denominator for the two fractions: \[ \frac{p}{1 - x^p} - \frac{q}{1 - x^q} = \frac{p(1 - x^q) - q(1 - x^p)}{(1 - x^p)(1 - x^q)} \] ### Step 2: Simplify the numerator Now, we simplify the numerator: \[ p(1 - x^q) - q(1 - x^p) = p - px^q - q + qx^p = (p - q) + qx^p - px^q \] So we have: \[ \frac{(p - q) + qx^p - px^q}{(1 - x^p)(1 - x^q)} \] ### Step 3: Evaluate the limit Now we take the limit as \( x \to 1 \): Substituting \( x = 1 \): \[ \text{Numerator: } (p - q) + q(1) - p(1) = (p - q) + q - p = (p - q) + (q - p) = 0 \] \[ \text{Denominator: } (1 - 1^p)(1 - 1^q) = 0 \cdot 0 = 0 \] This gives us an indeterminate form \( \frac{0}{0} \), so we can apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule Differentiate the numerator and denominator separately: **Numerator:** \[ \frac{d}{dx} \left( (p - q) + qx^p - px^q \right) = qpx^{p-1} - pqx^{q-1} \] **Denominator:** \[ \frac{d}{dx} \left( (1 - x^p)(1 - x^q) \right) = (1 - x^q)(-px^{p-1}) + (1 - x^p)(-qx^{q-1}) \] ### Step 5: Evaluate the limit again Now we evaluate the limit again as \( x \to 1 \): **Numerator:** \[ q \cdot p \cdot 1^{p-1} - p \cdot q \cdot 1^{q-1} = qp - pq = 0 \] **Denominator:** \[ (1 - 1^q)(-p \cdot 1^{p-1}) + (1 - 1^p)(-q \cdot 1^{q-1}) = 0 \] This is still \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. ### Step 6: Differentiate again and evaluate After differentiating again and simplifying, we find: \[ \lim_{x \to 1} \frac{pq(p-1)x^{p-2} - pq(q-1)x^{q-2}}{pq(1^{q-1}) + p(q-1)x^{p-1} + q(p-1)x^{q-1}} \] Evaluating this limit as \( x \to 1 \) gives us: \[ \frac{pq(p-1) - pq(q-1)}{pq + p(q-1) + q(p-1)} = \frac{pq(p-q)}{2pq} \] ### Final Answer Thus, the limit evaluates to: \[ \frac{p - q}{2} \]

To find the limit \[ \lim_{x \to 1} \left( \frac{p}{1 - x^p} - \frac{q}{1 - x^q} \right) \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x to1)(p/(1-x^p)-q/(1-x^q)),p ,q , in N , equal (a) (p+q)/2 (b) (p q)/2 (c) (p-q)/2 (d) sqrt(p/q)

lim_(nto oo) ((nsqrt(p)+nsqrt(q))/(2))^n,p,q,gt 0 equals

If alpha is the only positive root of (2^(2014)-1)x^2+(2-2^(2014))x-1=0 . Then the value of (alpha^(2014)-1)p^2+(1-alpha^(2015))p q+1 is equal to (a) 1 (b) 0 (c) pq (d) p^2+p q+1

If p > q > 0a n dp r < -1 < q r , then find the value of tan^(-1)((p-q)/(1+p q))+tan^(-1)((q-r)/(1+q r))+tan^(-1)((r-p)/(1+r p)) .

Evaluate lim_(x to oo) (ax^(p) + bx^(p- 3) + c)/(a_(1)x^(q) + b_(1)x^(q-1) + C_(1)X^(q-3) + d_(1)) Where p gt 0, q gt 0 , a,b,c, a_(1), b_(1),C_(1),d_(1) are constants.

Solve : (1)/(p)+(1)/(q)+(1)/(x)=(1)/(x+p+q)

If absolute maximum value of f(x)=(1)/(|x-4|+1)+(1)/(|x+8|+1)is(p)/(q), (p,q are coprime) the (p-q) is……… .

Let p(x) be a function defined on R such that lim_(xrarr infty) f (3x)/(f(x))=1,p'(x)=p'(1-x),"for all" x in [0,1],p(0)=1 and p(1)=41."Then" , int_(0)^(1)p(x) dx equals

If x nearly equal to 1 show that (px^q - qx^p)/(x^q - x^p) = (1)/(1 -x) ( nearly)

If the distance from the point P(1, 1, 1) to the line passing through the points Q(0, 6, 8) andR(-1, 4, 7) is expressed in the form sqrt((p)/(q)) , where p and q are co-prime, then the value of ((q+p)(p+q-1))/(2) is equal to

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  2. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  3. lim(xto1) (nx^(n-1)-(n+1)x^(n)+1)/((e^(x)-e)sinpix), where n=100,is eq...

    Text Solution

    |

  4. lim(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  5. The value of lim(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  6. The value of lim(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

    Text Solution

    |

  7. If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo then lim(xtoa){f(x)}^(g(x))=e^...

    Text Solution

    |

  8. If ("lim")(xvec0)(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, th...

    Text Solution

    |

  9. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  10. lim(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  11. The value of lim(xto1) (2-x)^(tan((pix)/(2))) is

    Text Solution

    |

  12. The value of lim(mtooo) ("cos"(x)/(m))^(m) is

    Text Solution

    |

  13. lim(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

    Text Solution

    |

  14. lim(ntooo) {((n)/(n+1))^(alpha)+"sin"(1)/(n)}^(n) (where alphainQ) is ...

    Text Solution

    |

  15. lim(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x) is

    Text Solution

    |

  16. lim(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x)

    Text Solution

    |

  17. The value of lim(x to 1) ((p)/(1-x^(p))-(q)/(1-xq)),p,q,inN, equals

    Text Solution

    |

  18. lim(xtooo) (x(logx)^(3))/(1+x+x^(2)) equals

    Text Solution

    |

  19. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  20. The value of lim(ntooo)(e^(n))/((1+(1)/(n))^(n^(2)))is (a) -1 (b) 0 ...

    Text Solution

    |