Home
Class 12
MATHS
Let f(x)={{:(x^(n)sin(1//x^(2))","xne0),...

Let `f(x)={{:(x^(n)sin(1//x^(2))","xne0),(0", "x=0):},(ninI).` Then

A

`(pi)/(2)`

B

`(pi)/(2sqrt(2))`

C

`(pi)/(sqrt(2))`

D

`sqrt(2)pi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit of the function \( f(x) \) as \( x \) approaches 0, we have: \[ f(x) = \begin{cases} x^n \sin\left(\frac{1}{x^2}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] We need to evaluate: \[ \lim_{x \to 0} f(x) \] ### Step 1: Analyze the function as \( x \) approaches 0 When \( x \) approaches 0, the term \( \sin\left(\frac{1}{x^2}\right) \) oscillates between -1 and 1. Therefore, we can say: \[ -1 \leq \sin\left(\frac{1}{x^2}\right) \leq 1 \] ### Step 2: Multiply by \( x^n \) Now, we can multiply the inequality by \( x^n \): \[ -x^n \leq x^n \sin\left(\frac{1}{x^2}\right) \leq x^n \] ### Step 3: Consider the limit of the bounds Next, we take the limit of the bounds as \( x \) approaches 0: 1. If \( n > 0 \): \[ \lim_{x \to 0} -x^n = 0 \quad \text{and} \quad \lim_{x \to 0} x^n = 0 \] By the Squeeze Theorem: \[ \lim_{x \to 0} x^n \sin\left(\frac{1}{x^2}\right) = 0 \] 2. If \( n = 0 \): \[ f(x) = \sin\left(\frac{1}{x^2}\right) \] The limit does not exist because \( \sin\left(\frac{1}{x^2}\right) \) oscillates between -1 and 1. 3. If \( n < 0 \): \[ -x^n \to \infty \quad \text{and} \quad x^n \to \infty \] In this case, the limit does not exist as \( x \to 0 \). ### Conclusion Thus, we conclude that: \[ \lim_{x \to 0} f(x) = \begin{cases} 0 & \text{if } n > 0 \\ \text{does not exist} & \text{if } n = 0 \\ \text{does not exist} & \text{if } n < 0 \end{cases} \]

To find the limit of the function \( f(x) \) as \( x \) approaches 0, we have: \[ f(x) = \begin{cases} x^n \sin\left(\frac{1}{x^2}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then

f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0 .

Let f (x)= {{:(x ^(n) (sin ""(1)/(x )",") , x ne 0),( 0"," , x =0):} Such that f (x) is continuous at x =0, f '(0) is real and finite, and lim _(x to 0^(+)) f'(x) does not exist. The holds true for which of the following values of n ?

Let g(x)=xf(x) , where f(x)={{:(x^(2)sin.(1)/(x),":",x ne0),(0,":",x=0):} . At x=0 ,

Let f(x)={{:(,x^(n)sin\ (1)/(x),x ne 0),(,0,x=0):} Then f(x) is continuous but not differentiable at x=0 . If

If f(x)={{:(,x^(m)sin((1)/(x)),x ne 0),(,0,x=0):} is a continous at x=0, then

Let f(x)={{:((2^((1)/(x))-1)/(2^((1)/(x))+1),":",xne0),(0,":,x=0):} , then f(x) is

Let f (x) = {{:(e ^((1)/(x ^(2)))sin ""(1)/(x), x ne0),(lamda, x =(0):}, then f '(0)

Let f(x)={{:(x sin.(1)/(x)",",x ne0),(0",",x=0):}} and g(x)={{:(x^(2)sin.(1)/(x)",", x ne 0),(0",", x=0):}} Discuss the graph for f(x) and g(x), and evaluate the continuity and differentiabilityof f(x) and g(x).

f(x) ={{:((x)/(2x^(2)+|x|),xne0),( 1, x=0):} then f(x) is

CENGAGE ENGLISH-LIMITS-Multiple Correct Answers Type
  1. ("lim")(n→oo)(a n-(1+n^2)/(1+n))=b , where a is a finite number, then ...

    Text Solution

    |

  2. If m,n inN,lim(xto0) (sinx^(n))/((sinx)^(m)) is

    Text Solution

    |

  3. Let f(x)={{:(x^(n)sin(1//x^(2))","xne0),(0", "x=0):},...

    Text Solution

    |

  4. If L=lim(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then

    Text Solution

    |

  5. Which of the following is true ({.} denotes the fractional part of the...

    Text Solution

    |

  6. Which of the following is/are correct?

    Text Solution

    |

  7. If lim(xto1) (2-x+a[x-1]+b[1+x]) exists, then a and b can take the val...

    Text Solution

    |

  8. L=("lim")(xveca)(|2sinx-1|)/(2sinx-1)dotT h e n limit does not exist ...

    Text Solution

    |

  9. Let f(x)=lim(ntooo) (x)/(x^(2n)+1). Then f has

    Text Solution

    |

  10. lim(ntooo) (-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to (n inN)

    Text Solution

    |

  11. Given a real-valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2)...

    Text Solution

    |

  12. If f(x)=(3x^2+a x+a+1)/(x^2+x-2), then which of the following can be c...

    Text Solution

    |

  13. The value of lim(ntooo) (1)/(1+nsin^(2)nx)" can be " (n inN)

    Text Solution

    |

  14. Lim x tending 5f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest i...

    Text Solution

    |

  15. Given lim(x to 0)(f(x))/(x^(2))=2, where [.] denotes the greatest inte...

    Text Solution

    |

  16. If f(a)=lim(xto2)(sin^(x)a+cos^(x)a)^((1)/((x-2)))" for "ain[0,(pi)/(2...

    Text Solution

    |

  17. Let L=("lim")(xvec0)(a-sqrt(a^2-x^2)-(x^2)/4)/(x^4),a > 0. IfLi sfin i...

    Text Solution

    |

  18. Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x)) for x!=1

    Text Solution

    |

  19. If A=lim(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim(x to 0)([|...

    Text Solution

    |

  20. If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the gre...

    Text Solution

    |