Home
Class 12
MATHS
If L=lim(xto0) (1)/(x^(3))((1)/(sqrt(1+x...

If `L=lim_(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx))` exists,then

A

`cosLltcosR`

B

`tan(2L)ltanlt2R`

C

`sin LgtsinR`

D

`None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( L = \lim_{x \to 0} \frac{1}{x^3} \left( \frac{1}{\sqrt{1+x}} - \frac{1+ax}{1+bx} \right) \) and determine the conditions under which it exists, we can follow these steps: ### Step 1: Simplify the expression inside the limit We start with the expression: \[ L = \lim_{x \to 0} \frac{1}{x^3} \left( \frac{1}{\sqrt{1+x}} - \frac{1+ax}{1+bx} \right) \] ### Step 2: Expand the terms using Taylor series We can use the Taylor series expansion for small values of \( x \): - For \( \sqrt{1+x} \): \[ \sqrt{1+x} \approx 1 + \frac{x}{2} - \frac{x^2}{8} + O(x^3) \] Thus, \[ \frac{1}{\sqrt{1+x}} \approx 1 - \frac{x}{2} + \frac{x^2}{8} + O(x^3) \] - For \( \frac{1+ax}{1+bx} \): Using the expansion: \[ \frac{1+ax}{1+bx} \approx (1 + ax)(1 - bx + b^2x^2 - \ldots) \approx 1 + (a-b)x + (b^2 - ab)x^2 + O(x^3) \] ### Step 3: Substitute the expansions back into the limit Now substituting these expansions into our limit: \[ L = \lim_{x \to 0} \frac{1}{x^3} \left( \left( 1 - \frac{x}{2} + \frac{x^2}{8} \right) - \left( 1 + (a-b)x + (b^2 - ab)x^2 \right) \right) \] ### Step 4: Combine like terms Combining the terms: \[ L = \lim_{x \to 0} \frac{1}{x^3} \left( -\left(\frac{1}{2} + (a-b)\right)x + \left(\frac{1}{8} - (b^2 - ab)\right)x^2 \right) \] ### Step 5: Analyze the limit For the limit \( L \) to exist, the coefficients of \( x \) and \( x^2 \) must be zero: 1. Coefficient of \( x \): \[ -\left(\frac{1}{2} + (a-b)\right) = 0 \implies a - b = -\frac{1}{2} \] 2. Coefficient of \( x^2 \): \[ \frac{1}{8} - (b^2 - ab) = 0 \implies b^2 - ab = \frac{1}{8} \] ### Step 6: Solve the equations Now we have two equations: 1. \( a - b = -\frac{1}{2} \) 2. \( b^2 - ab = \frac{1}{8} \) From the first equation, we can express \( a \) in terms of \( b \): \[ a = b - \frac{1}{2} \] Substituting this into the second equation: \[ b^2 - b(b - \frac{1}{2}) = \frac{1}{8} \] This simplifies to: \[ b^2 - b^2 + \frac{b}{2} = \frac{1}{8} \implies \frac{b}{2} = \frac{1}{8} \implies b = \frac{1}{4} \] Now substituting \( b \) back to find \( a \): \[ a = \frac{1}{4} - \frac{1}{2} = -\frac{1}{4} \] ### Conclusion Thus, the values of \( a \) and \( b \) for which the limit exists are: \[ a = -\frac{1}{4}, \quad b = \frac{1}{4} \]

To solve the limit problem \( L = \lim_{x \to 0} \frac{1}{x^3} \left( \frac{1}{\sqrt{1+x}} - \frac{1+ax}{1+bx} \right) \) and determine the conditions under which it exists, we can follow these steps: ### Step 1: Simplify the expression inside the limit We start with the expression: \[ L = \lim_{x \to 0} \frac{1}{x^3} \left( \frac{1}{\sqrt{1+x}} - \frac{1+ax}{1+bx} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (2^(x)-1)/(sqrt(1+x)-1).

Evaluate lim_(xto0) ((1)/(x^(2))-(1)/(sin^(2)x)).

lim_(xto0)((e^(x)-1)/x)^(1//x)

lim_(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

Evaluate Lim_(xto0) ((1+x)^(6)-1)/((1+x)^(2)-1)

lim_(xto0) ((1-3^(x)-4^(x)+12^(x)))/(sqrt((2cosx+7))-3)

(ii) lim_(xto0) ((1+x)^3-(1-x)^3)/x

Evaluate lim_(xto0)(1+tan^(2)sqrt(x))^(1/(2x))

Find lim_(xto0)(cot^(-1)(1/x))/x

If L=lim_(xto0)(sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then Equation ax^(2)+bx+c=0 has

CENGAGE ENGLISH-LIMITS-Multiple Correct Answers Type
  1. If m,n inN,lim(xto0) (sinx^(n))/((sinx)^(m)) is

    Text Solution

    |

  2. Let f(x)={{:(x^(n)sin(1//x^(2))","xne0),(0", "x=0):},...

    Text Solution

    |

  3. If L=lim(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then

    Text Solution

    |

  4. Which of the following is true ({.} denotes the fractional part of the...

    Text Solution

    |

  5. Which of the following is/are correct?

    Text Solution

    |

  6. If lim(xto1) (2-x+a[x-1]+b[1+x]) exists, then a and b can take the val...

    Text Solution

    |

  7. L=("lim")(xveca)(|2sinx-1|)/(2sinx-1)dotT h e n limit does not exist ...

    Text Solution

    |

  8. Let f(x)=lim(ntooo) (x)/(x^(2n)+1). Then f has

    Text Solution

    |

  9. lim(ntooo) (-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to (n inN)

    Text Solution

    |

  10. Given a real-valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2)...

    Text Solution

    |

  11. If f(x)=(3x^2+a x+a+1)/(x^2+x-2), then which of the following can be c...

    Text Solution

    |

  12. The value of lim(ntooo) (1)/(1+nsin^(2)nx)" can be " (n inN)

    Text Solution

    |

  13. Lim x tending 5f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest i...

    Text Solution

    |

  14. Given lim(x to 0)(f(x))/(x^(2))=2, where [.] denotes the greatest inte...

    Text Solution

    |

  15. If f(a)=lim(xto2)(sin^(x)a+cos^(x)a)^((1)/((x-2)))" for "ain[0,(pi)/(2...

    Text Solution

    |

  16. Let L=("lim")(xvec0)(a-sqrt(a^2-x^2)-(x^2)/4)/(x^4),a > 0. IfLi sfin i...

    Text Solution

    |

  17. Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x)) for x!=1

    Text Solution

    |

  18. If A=lim(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim(x to 0)([|...

    Text Solution

    |

  19. If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the gre...

    Text Solution

    |

  20. Assume that lim(thetararr-1) f(theta) exists and (theta^(2)+theta-2)/(...

    Text Solution

    |