Home
Class 12
MATHS
If lim(xto1) (2-x+a[x-1]+b[1+x]) exists,...

If `lim_(xto1) (2-x+a[x-1]+b[1+x])` exists, then a and b can take the values (where `[.]` denotes the greatest integer function)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \( a \) and \( b \) such that the limit \[ \lim_{x \to 1} (2 - x + a[\lfloor x - 1 \rfloor] + b[\lfloor x + 1 \rfloor]) \] exists. Here, \( \lfloor . \rfloor \) denotes the greatest integer function. ### Step-by-Step Solution **Step 1: Find the Left-Hand Limit** We start by calculating the left-hand limit as \( x \) approaches 1 from the left, denoted as \( x \to 1^- \). \[ \lim_{x \to 1^-} (2 - x + a[\lfloor x - 1 \rfloor] + b[\lfloor x + 1 \rfloor]) \] For \( x \) slightly less than 1 (i.e., \( x = 1 - \epsilon \) where \( \epsilon \) is a small positive number): - \( \lfloor x - 1 \rfloor = \lfloor 1 - \epsilon - 1 \rfloor = \lfloor -\epsilon \rfloor = -1 \) (since \( -\epsilon < 0 \)) - \( \lfloor x + 1 \rfloor = \lfloor 1 - \epsilon + 1 \rfloor = \lfloor 2 - \epsilon \rfloor = 1 \) (since \( 2 - \epsilon < 2 \)) Substituting these values into the limit expression: \[ \lim_{x \to 1^-} (2 - (1 - \epsilon) + a(-1) + b(1)) \] This simplifies to: \[ \lim_{x \to 1^-} (1 + \epsilon - a + b) = 1 - a + b \] **Step 2: Find the Right-Hand Limit** Next, we calculate the right-hand limit as \( x \) approaches 1 from the right, denoted as \( x \to 1^+ \). \[ \lim_{x \to 1^+} (2 - x + a[\lfloor x - 1 \rfloor] + b[\lfloor x + 1 \rfloor]) \] For \( x \) slightly more than 1 (i.e., \( x = 1 + \epsilon \)): - \( \lfloor x - 1 \rfloor = \lfloor 1 + \epsilon - 1 \rfloor = \lfloor \epsilon \rfloor = 0 \) (since \( \epsilon > 0 \)) - \( \lfloor x + 1 \rfloor = \lfloor 1 + \epsilon + 1 \rfloor = \lfloor 2 + \epsilon \rfloor = 2 \) (since \( 2 + \epsilon > 2 \)) Substituting these values into the limit expression: \[ \lim_{x \to 1^+} (2 - (1 + \epsilon) + a(0) + b(2)) \] This simplifies to: \[ \lim_{x \to 1^+} (1 - \epsilon + 2b) = 1 + 2b \] **Step 3: Set Left-Hand Limit Equal to Right-Hand Limit** For the limit to exist, the left-hand limit must equal the right-hand limit: \[ 1 - a + b = 1 + 2b \] Subtracting 1 from both sides gives: \[ -a + b = 2b \] Rearranging this gives: \[ -a = b \] Thus, we find the relationship: \[ b = -a \] ### Conclusion The values of \( a \) and \( b \) can take any values as long as they satisfy the relationship \( b = -a \).

To solve the problem, we need to determine the values of \( a \) and \( b \) such that the limit \[ \lim_{x \to 1} (2 - x + a[\lfloor x - 1 \rfloor] + b[\lfloor x + 1 \rfloor]) \] exists. Here, \( \lfloor . \rfloor \) denotes the greatest integer function. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If ("lim")_(x->1)(2-x+a[x-1]+b[1+x]) exists, then a and b can take the values of (where [.] denotes the greatest integer function). (a) a=1/3,b=1 (b) a=1, b=-1 (c) a=9, b=-9 (d) a=2, b=2/3

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

The value of the lim_(x->0)x/a[b/x](a!=0)(where [*] denotes the greatest integer function) is

x→1 lim ​ (1−x+[x−1]+[1−x]) is equal to (where [.] denotes greatest integer function)

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

The value of int_(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] denotes the greatest integer function)

CENGAGE ENGLISH-LIMITS-Multiple Correct Answers Type
  1. Let f(x)={{:(x^(n)sin(1//x^(2))","xne0),(0", "x=0):},...

    Text Solution

    |

  2. If L=lim(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then

    Text Solution

    |

  3. Which of the following is true ({.} denotes the fractional part of the...

    Text Solution

    |

  4. Which of the following is/are correct?

    Text Solution

    |

  5. If lim(xto1) (2-x+a[x-1]+b[1+x]) exists, then a and b can take the val...

    Text Solution

    |

  6. L=("lim")(xveca)(|2sinx-1|)/(2sinx-1)dotT h e n limit does not exist ...

    Text Solution

    |

  7. Let f(x)=lim(ntooo) (x)/(x^(2n)+1). Then f has

    Text Solution

    |

  8. lim(ntooo) (-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to (n inN)

    Text Solution

    |

  9. Given a real-valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2)...

    Text Solution

    |

  10. If f(x)=(3x^2+a x+a+1)/(x^2+x-2), then which of the following can be c...

    Text Solution

    |

  11. The value of lim(ntooo) (1)/(1+nsin^(2)nx)" can be " (n inN)

    Text Solution

    |

  12. Lim x tending 5f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest i...

    Text Solution

    |

  13. Given lim(x to 0)(f(x))/(x^(2))=2, where [.] denotes the greatest inte...

    Text Solution

    |

  14. If f(a)=lim(xto2)(sin^(x)a+cos^(x)a)^((1)/((x-2)))" for "ain[0,(pi)/(2...

    Text Solution

    |

  15. Let L=("lim")(xvec0)(a-sqrt(a^2-x^2)-(x^2)/4)/(x^4),a > 0. IfLi sfin i...

    Text Solution

    |

  16. Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x)) for x!=1

    Text Solution

    |

  17. If A=lim(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim(x to 0)([|...

    Text Solution

    |

  18. If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the gre...

    Text Solution

    |

  19. Assume that lim(thetararr-1) f(theta) exists and (theta^(2)+theta-2)/(...

    Text Solution

    |

  20. Let f(x)=lim(nrarroo) (tan^(-1)(tanx))/(1+(log(x)x)^(n)),x ne(2n+1)(pi...

    Text Solution

    |