Home
Class 12
MATHS
If f(x)=(3x^2+a x+a+1)/(x^2+x-2), then w...

If `f(x)=(3x^2+a x+a+1)/(x^2+x-2),` then which of the following can be correct (a) `("lim")_(xvec 1)f(x) for a=-2` (b) `("lim")_(xvec-2)f(x) for a=13` (c) `("lim")_(xvec 1)f(x)=4/3` (d) `("lim")_(xvec-2)f(x)=-1/3`

A

`"ln "a_(1)`

B

`e^(a_(n))`

C

a_(1)`

D

`a_(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit of the function \( f(x) = \frac{3x^2 + ax + (a + 1)}{x^2 + x - 2} \) for different values of \( a \) and at specific points. ### Step-by-Step Solution 1. **Identify the function and the limits to evaluate:** The function is given as: \[ f(x) = \frac{3x^2 + ax + (a + 1)}{x^2 + x - 2} \] We need to evaluate the limits for the following conditions: - (a) \( \lim_{x \to 1} f(x) \) for \( a = -2 \) - (b) \( \lim_{x \to -2} f(x) \) for \( a = 13 \) - (c) \( \lim_{x \to 1} f(x) = \frac{4}{3} \) - (d) \( \lim_{x \to -2} f(x) = -\frac{1}{3} \) 2. **Evaluate limit (a): \( \lim_{x \to 1} f(x) \) for \( a = -2 \)** - Substitute \( x = 1 \): \[ f(1) = \frac{3(1)^2 + (-2)(1) + (-2 + 1)}{(1)^2 + (1) - 2} = \frac{3 - 2 - 1}{1 + 1 - 2} = \frac{0}{0} \] - Since we have a \( 0/0 \) form, we apply L'Hôpital's Rule: - Differentiate the numerator and denominator: \[ \text{Numerator: } \frac{d}{dx}(3x^2 - 2x - 1) = 6x - 2 \] \[ \text{Denominator: } \frac{d}{dx}(x^2 + x - 2) = 2x + 1 \] - Now, applying L'Hôpital's Rule: \[ \lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{6x - 2}{2x + 1} = \frac{6(1) - 2}{2(1) + 1} = \frac{4}{3} \] - Since \( a = -2 \) gives us \( \frac{4}{3} \), option (a) is correct. 3. **Evaluate limit (b): \( \lim_{x \to -2} f(x) \) for \( a = 13 \)** - Substitute \( x = -2 \): \[ f(-2) = \frac{3(-2)^2 + 13(-2) + (13 + 1)}{(-2)^2 + (-2) - 2} = \frac{12 - 26 + 14}{4 - 2 - 2} = \frac{0}{0} \] - Again, we apply L'Hôpital's Rule: - Differentiate the numerator and denominator: \[ \text{Numerator: } \frac{d}{dx}(3x^2 + 13x + 14) = 6x + 13 \] \[ \text{Denominator: } \frac{d}{dx}(x^2 + x - 2) = 2x + 1 \] - Now, applying L'Hôpital's Rule: \[ \lim_{x \to -2} f(x) = \lim_{x \to -2} \frac{6x + 13}{2x + 1} = \frac{6(-2) + 13}{2(-2) + 1} = \frac{-12 + 13}{-4 + 1} = \frac{1}{-3} = -\frac{1}{3} \] - Since \( a = 13 \) gives us \( -\frac{1}{3} \), option (b) is correct. 4. **Evaluate limit (c): \( \lim_{x \to 1} f(x) = \frac{4}{3} \)** - From the previous calculation, we already found that: \[ \lim_{x \to 1} f(x) = \frac{4}{3} \] - Therefore, option (c) is correct. 5. **Evaluate limit (d): \( \lim_{x \to -2} f(x) = -\frac{1}{3} \)** - From the previous calculation, we found that: \[ \lim_{x \to -2} f(x) = -\frac{1}{3} \] - Therefore, option (d) is also correct. ### Conclusion All options (a), (b), (c), and (d) are correct.

To solve the problem, we need to evaluate the limit of the function \( f(x) = \frac{3x^2 + ax + (a + 1)}{x^2 + x - 2} \) for different values of \( a \) and at specific points. ### Step-by-Step Solution 1. **Identify the function and the limits to evaluate:** The function is given as: \[ f(x) = \frac{3x^2 + ax + (a + 1)}{x^2 + x - 2} ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(3x^2+a x+a+1)/(x^2+x-2), then which of the following can be correct ("lim")_(xvec1)f(x)e xi s t s a=-2 ("lim")_(xvec-2)f(x)e xi s t s a=13 ("lim")_(xvec1)f(x)=4/3 ("lim")_(xvec-2)f(x)=-1/3

Which of the following limits tends to unity? (a) ("lim")_(xvec0)sin(tanx)/(sinx) (b) ("lim")_(xvecpi/2)sin(cosx)/(cosx) (c) ("lim")_(xvec0)"sin"(e^x-1)/x (d) ("lim")_(xvec0)(sqrt(1+x)-sqrt(1-x))/x

Consider the following graph of the function y=f(x)dot Which of the following is/are correct? fig. 1. ("lim")_(xvec1)f(x) does not exist. 2. ("lim")_(xvec2)f(x) does not exist. 3. ("lim")_(xvec3)f(x)=3 . 4. ("lim")_(xvec1.99)f(x) = exists

Which of the following is and determinate form (lim)_(xvec1)(x^3-1)/(x-1) b. (lim)_(xvec0)(1+x)^(1//x) c. (lim)_(xvec1)(1/(x^2-1)-1/(x-1)) d. (lim)_(xvec0)(|x|)^(s in R)

("lim")_(xvec1)(1-x)tan(pix)/2=_____

Given ("lim")_(xvec0)(f(x))/(x^2)=2, \where\ [dot] denotes the greatest integer function, then (A) ("lim")_(xvec0)[f(x)]=0 (B) ("lim")_(xvec0)[f(x)]=1 (C) ("lim")_(xvec0)[(f(x))/x] does not exist (D) ("lim")_(xvec0)[(f(x))/x] exists

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represents the greatest integer function) (lim)_(xvec0^+)f(x)=-1 b. (lim)_(xvec0^-)f(x)=0 c. (lim)_(xvec0^)f(x)=-1 d. (lim)_(xvec0^)f(x)=0

Evaluate: ("lim")_(xvec2)(x-2)/((log)_a(x-1))

Given a real-valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2) sqrt({x}cot{x}),for x 0 Where [x] is the integral part and {x} is the fractional part of x , then ("lim")_(xvec0^+)f(x)=1 , ("lim")_(xvec0^-)f(x)=cot1 , cot^(-1)(("lim")_(xvec0^-)f(x))^2=1 , tan^(-1)(("lim")_(xvec0^+)f(x))=pi/4

Consider the following graph of the function y=f(x). Which of the following is//are correct? (a) lim_(xto1) f(x) does not exist. (b) lim_(xto2)f(x) does not exist. (c) lim_(xto3) f(x)=3. (d)lim_(xto1.99) f(x) exists.

CENGAGE ENGLISH-LIMITS-Multiple Correct Answers Type
  1. Let f(x)={{:(x^(n)sin(1//x^(2))","xne0),(0", "x=0):},...

    Text Solution

    |

  2. If L=lim(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then

    Text Solution

    |

  3. Which of the following is true ({.} denotes the fractional part of the...

    Text Solution

    |

  4. Which of the following is/are correct?

    Text Solution

    |

  5. If lim(xto1) (2-x+a[x-1]+b[1+x]) exists, then a and b can take the val...

    Text Solution

    |

  6. L=("lim")(xveca)(|2sinx-1|)/(2sinx-1)dotT h e n limit does not exist ...

    Text Solution

    |

  7. Let f(x)=lim(ntooo) (x)/(x^(2n)+1). Then f has

    Text Solution

    |

  8. lim(ntooo) (-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to (n inN)

    Text Solution

    |

  9. Given a real-valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2)...

    Text Solution

    |

  10. If f(x)=(3x^2+a x+a+1)/(x^2+x-2), then which of the following can be c...

    Text Solution

    |

  11. The value of lim(ntooo) (1)/(1+nsin^(2)nx)" can be " (n inN)

    Text Solution

    |

  12. Lim x tending 5f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest i...

    Text Solution

    |

  13. Given lim(x to 0)(f(x))/(x^(2))=2, where [.] denotes the greatest inte...

    Text Solution

    |

  14. If f(a)=lim(xto2)(sin^(x)a+cos^(x)a)^((1)/((x-2)))" for "ain[0,(pi)/(2...

    Text Solution

    |

  15. Let L=("lim")(xvec0)(a-sqrt(a^2-x^2)-(x^2)/4)/(x^4),a > 0. IfLi sfin i...

    Text Solution

    |

  16. Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x)) for x!=1

    Text Solution

    |

  17. If A=lim(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim(x to 0)([|...

    Text Solution

    |

  18. If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the gre...

    Text Solution

    |

  19. Assume that lim(thetararr-1) f(theta) exists and (theta^(2)+theta-2)/(...

    Text Solution

    |

  20. Let f(x)=lim(nrarroo) (tan^(-1)(tanx))/(1+(log(x)x)^(n)),x ne(2n+1)(pi...

    Text Solution

    |