Home
Class 12
MATHS
The value of lim(ntooo) (1)/(1+nsin^(2)n...

The value of `lim_(ntooo) (1)/(1+nsin^(2)nx)" can be " (n inN)`

A

`"ln "a_(n)`

B

`e^(a_(1))`

C

`a_(1)`

D

`a_(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \frac{1}{1 + n \sin^2(nx)} \), we will analyze the behavior of the expression as \( n \) approaches infinity. ### Step-by-Step Solution: 1. **Identify the behavior of \( \sin^2(nx) \)**: The function \( \sin^2(nx) \) oscillates between 0 and 1 for any value of \( x \). Therefore, we can conclude that: \[ 0 \leq \sin^2(nx) \leq 1 \] 2. **Consider different cases for \( x \)**: - **Case 1**: When \( x = m\pi \) (where \( m \) is an integer): \[ \sin^2(m\pi) = 0 \] Thus, the limit becomes: \[ \lim_{n \to \infty} \frac{1}{1 + n \cdot 0} = \frac{1}{1 + 0} = 1 \] - **Case 2**: When \( x \) is not a multiple of \( \pi \): In this case, \( \sin^2(nx) \) will oscillate and will not be equal to 0. Therefore, it will take values in the interval \( (0, 1] \). As \( n \) approaches infinity, \( n \sin^2(nx) \) will approach infinity because: \[ n \sin^2(nx) \to \infty \quad \text{(since } \sin^2(nx) \text{ is bounded away from 0)} \] Thus, the limit becomes: \[ \lim_{n \to \infty} \frac{1}{1 + n \sin^2(nx)} = \frac{1}{1 + \infty} = 0 \] 3. **Conclusion**: Therefore, we can summarize the results: - If \( x = m\pi \), then the limit is \( 1 \). - If \( x \) is not a multiple of \( \pi \), then the limit is \( 0 \). ### Final Result: \[ \lim_{n \to \infty} \frac{1}{1 + n \sin^2(nx)} = \begin{cases} 1 & \text{if } x = m\pi \text{ for } m \in \mathbb{Z} \\ 0 & \text{if } x \text{ is not a multiple of } \pi \end{cases} \]

To solve the limit \( \lim_{n \to \infty} \frac{1}{1 + n \sin^2(nx)} \), we will analyze the behavior of the expression as \( n \) approaches infinity. ### Step-by-Step Solution: 1. **Identify the behavior of \( \sin^2(nx) \)**: The function \( \sin^2(nx) \) oscillates between 0 and 1 for any value of \( x \). Therefore, we can conclude that: \[ 0 \leq \sin^2(nx) \leq 1 ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo) n^(1/n)

lim_(n->oo) nsin(1/n)

The value of lim_(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n-1)-(n)/(1-2n).(n)/(n^(2)+1)] is

Evaluate lim_(ntooo)(pin)^(2//n)

The value of lim_(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^((n-1)//n))/(n)] is

The value of lim_(ntooo)(e^(n))/((1+(1)/(n))^(n^(2))) is (a) -1 (b) 0 (c) 1 (d) ∞

Evaluate lim_(ntooo) (4^(n)+5^(n))^(1//n)

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

lim_(ntooo) ((n!)^(1//n))/(n) equals

CENGAGE ENGLISH-LIMITS-Multiple Correct Answers Type
  1. Let f(x)={{:(x^(n)sin(1//x^(2))","xne0),(0", "x=0):},...

    Text Solution

    |

  2. If L=lim(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then

    Text Solution

    |

  3. Which of the following is true ({.} denotes the fractional part of the...

    Text Solution

    |

  4. Which of the following is/are correct?

    Text Solution

    |

  5. If lim(xto1) (2-x+a[x-1]+b[1+x]) exists, then a and b can take the val...

    Text Solution

    |

  6. L=("lim")(xveca)(|2sinx-1|)/(2sinx-1)dotT h e n limit does not exist ...

    Text Solution

    |

  7. Let f(x)=lim(ntooo) (x)/(x^(2n)+1). Then f has

    Text Solution

    |

  8. lim(ntooo) (-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to (n inN)

    Text Solution

    |

  9. Given a real-valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2)...

    Text Solution

    |

  10. If f(x)=(3x^2+a x+a+1)/(x^2+x-2), then which of the following can be c...

    Text Solution

    |

  11. The value of lim(ntooo) (1)/(1+nsin^(2)nx)" can be " (n inN)

    Text Solution

    |

  12. Lim x tending 5f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest i...

    Text Solution

    |

  13. Given lim(x to 0)(f(x))/(x^(2))=2, where [.] denotes the greatest inte...

    Text Solution

    |

  14. If f(a)=lim(xto2)(sin^(x)a+cos^(x)a)^((1)/((x-2)))" for "ain[0,(pi)/(2...

    Text Solution

    |

  15. Let L=("lim")(xvec0)(a-sqrt(a^2-x^2)-(x^2)/4)/(x^4),a > 0. IfLi sfin i...

    Text Solution

    |

  16. Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x)) for x!=1

    Text Solution

    |

  17. If A=lim(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim(x to 0)([|...

    Text Solution

    |

  18. If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the gre...

    Text Solution

    |

  19. Assume that lim(thetararr-1) f(theta) exists and (theta^(2)+theta-2)/(...

    Text Solution

    |

  20. Let f(x)=lim(nrarroo) (tan^(-1)(tanx))/(1+(log(x)x)^(n)),x ne(2n+1)(pi...

    Text Solution

    |