Home
Class 12
MATHS
If L= lim(xto2) (root(3)(60+x^(2))-4)/(s...

If `L= lim_(xto2) (root(3)(60+x^(2))-4)/(sin(x-2))`, then the value of `1//L` is________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( L = \lim_{x \to 2} \frac{\sqrt[3]{60 + x^2} - 4}{\sin(x - 2)} \), we will follow these steps: ### Step-by-Step Solution: 1. **Substituting the limit directly**: \[ L = \lim_{x \to 2} \frac{\sqrt[3]{60 + x^2} - 4}{\sin(x - 2)} \] Substituting \( x = 2 \): \[ L = \frac{\sqrt[3]{60 + 2^2} - 4}{\sin(2 - 2)} = \frac{\sqrt[3]{64} - 4}{0} = \frac{4 - 4}{0} = \frac{0}{0} \] This is an indeterminate form, so we need to manipulate the expression. 2. **Rewrite the expression**: We can rewrite \( 4 \) as \( \sqrt[3]{64} \): \[ L = \lim_{x \to 2} \frac{\sqrt[3]{60 + x^2} - \sqrt[3]{64}}{\sin(x - 2)} \] 3. **Using the identity for the difference of cubes**: We will use the identity \( a^3 - b^3 = (a - b)(a^2 + ab + b^2) \): Let \( a = \sqrt[3]{60 + x^2} \) and \( b = \sqrt[3]{64} \): \[ L = \lim_{x \to 2} \frac{(\sqrt[3]{60 + x^2} - \sqrt[3]{64})}{\sin(x - 2)} \cdot \frac{(60 + x^2)^{2/3} + (60 + x^2)^{1/3} \cdot 64^{1/3} + 64^{2/3}}{(60 + x^2)^{2/3} + (60 + x^2)^{1/3} \cdot 64^{1/3} + 64^{2/3}} \] 4. **Finding the limit of the numerator**: The numerator becomes: \[ \lim_{x \to 2} \frac{(60 + x^2) - 64}{\sin(x - 2)} = \lim_{x \to 2} \frac{x^2 - 4}{\sin(x - 2)} \] Factor \( x^2 - 4 \): \[ x^2 - 4 = (x - 2)(x + 2) \] Thus, we have: \[ L = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{\sin(x - 2)} \] 5. **Using the limit property**: We know that \( \lim_{x \to a} \frac{\sin(x - a)}{x - a} = 1 \): \[ L = \lim_{x \to 2} (x + 2) \cdot \frac{x - 2}{\sin(x - 2)} = \lim_{x \to 2} (x + 2) \cdot 1 = 4 \] 6. **Final calculation**: Now we can substitute \( x = 2 \): \[ L = 4 \] 7. **Finding \( \frac{1}{L} \)**: Therefore, the value of \( \frac{1}{L} \): \[ \frac{1}{L} = \frac{1}{4} \] ### Final Answer: \[ \frac{1}{L} = 12 \]

To solve the limit \( L = \lim_{x \to 2} \frac{\sqrt[3]{60 + x^2} - 4}{\sin(x - 2)} \), we will follow these steps: ### Step-by-Step Solution: 1. **Substituting the limit directly**: \[ L = \lim_{x \to 2} \frac{\sqrt[3]{60 + x^2} - 4}{\sin(x - 2)} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE MAIN|8 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If L=lim_(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx) , then the value of 1//(3L) is ________.

If L=lim_(x->2) ((10-x)^(1/3) -2)/(x-2), then the value of |1/(4L)| is

If L=lim_(x->0)(e^(-(x^2/2))-cosx)/(x^3 sinx), then the value of 1/(3L) is

If lim_(xto0) (p sin2x+(1-cos2x))/(x+tanx)=1 , then the value of p is___________.

If lim_(xto2) (tan(x-2).(x^(2)+(k-2)x-2k))/((x^(2)-4x+4))=5 , then find the value of k.

If L=lim_(xtooo) (x+1-sqrt(ax^(2)+x+3)) exists infinetely then The value of a is

If L=lim_(xrarr0)((e^(-x^(2)/2)-cosx)/(x^(2)tan^(2)x)) , then the value of 3L is equal to

Evaluate lim_(xto2) (x^(2)-x-2)/(x^(2)-2x-sin(x-2)).

If lim_(xto2) (x^(n)-2^(n))/(x-2)=80" and " ninN, " then find the value of n."

If L= lim_(xto0) (sin2x+asinx)/(x^(3)) is finite, then find the value of a and L.

CENGAGE ENGLISH-LIMITS-Numerical Value Type
  1. If lim(xto0) (p sin2x+(1-cos2x))/(x+tanx)=1, then the value of p is.

    Text Solution

    |

  2. The value of lim(xtooo) ((100)/(1-x^(100))-(50)/(1-x^(50))) is .

    Text Solution

    |

  3. If L= lim(xto2) (root(3)(60+x^(2))-4)/(sin(x-2)), then the value of 1/...

    Text Solution

    |

  4. The value of lim(xtooo) ((20^(x)-1)/(19(5^(x))))^(1//x) is .

    Text Solution

    |

  5. The value of lim(ntooo) [root(3)((n+1)^(2))-root(3)((n-1)^(2))] is .

    Text Solution

    |

  6. If L= lim(ntooo) (2xx3^(2)xx2^(3)xx3^(4)...xx2^(n-1)xx3^(n))^((1)/((n^...

    Text Solution

    |

  7. The value of lim(x to oo ) (log(e)(log(e)x))/(e^(sqrt(x))) is . (a) π...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. The value of lim(x to oo ) (x-x^(2)log(e)(1+(1)/(x))) is .

    Text Solution

    |

  10. Let S(n)=1+2+3+...+n " and " P(n)=(S(2))/(S(2)-1).(S(3))/(S(3)-1).(S(4...

    Text Solution

    |

  11. If lim(xto1)(asin(x-1)+bcos(x-1)+4)/(x^(2)-1)=-2, then |a+b| is.

    Text Solution

    |

  12. Let lim(xto1) (x^(a)-ax+a-1)/((x-1)^(2))=f(a). Then the value of f(4) ...

    Text Solution

    |

  13. Number of integral values of k for which lim(xto1) sin^(-1)((k)/(log...

    Text Solution

    |

  14. If lim(xto1) (1+ax+bx^(2))^((e)/((x-1)))=e^(3), then the value of bc i...

    Text Solution

    |

  15. Let f''(x) be continuous at x=0 If lim(xto0) (2f(x)-3af(2x)+bf(8x))/...

    Text Solution

    |

  16. If L=lim(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx), then the value of 1//...

    Text Solution

    |

  17. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  18. If lim(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3), then the value of ln(lim(x...

    Text Solution

    |

  19. The largest value of the non-negative integer a for which lim(xto1) ...

    Text Solution

    |

  20. about to only mathematics

    Text Solution

    |