Home
Class 12
MATHS
The value of lim(ntooo) [root(3)((n+1)^(...

The value of `lim_(ntooo) [root(3)((n+1)^(2))-root(3)((n-1)^(2))]` is __________.

A

Equals `(1)/(sqrt(2))`

B

Does not exist

C

Equals `sqrt(2)`

D

Equals -sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \left( \sqrt[3]{(n+1)^2} - \sqrt[3]{(n-1)^2} \right) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ \lim_{n \to \infty} \left( \sqrt[3]{(n+1)^2} - \sqrt[3]{(n-1)^2} \right) \] ### Step 2: Factor out the dominant term As \( n \to \infty \), both \( (n+1)^2 \) and \( (n-1)^2 \) can be approximated by \( n^2 \). Thus, we can factor \( n^2 \) out of the cube roots: \[ \sqrt[3]{(n+1)^2} = \sqrt[3]{n^2 \left(1 + \frac{1}{n}\right)^2} = n^{2/3} \sqrt[3]{\left(1 + \frac{1}{n}\right)^2} \] \[ \sqrt[3]{(n-1)^2} = \sqrt[3]{n^2 \left(1 - \frac{1}{n}\right)^2} = n^{2/3} \sqrt[3]{\left(1 - \frac{1}{n}\right)^2} \] ### Step 3: Substitute back into the limit Now substituting these back into the limit: \[ \lim_{n \to \infty} \left( n^{2/3} \sqrt[3]{\left(1 + \frac{1}{n}\right)^2} - n^{2/3} \sqrt[3]{\left(1 - \frac{1}{n}\right)^2} \right) \] Factoring out \( n^{2/3} \): \[ = n^{2/3} \lim_{n \to \infty} \left( \sqrt[3]{\left(1 + \frac{1}{n}\right)^2} - \sqrt[3]{\left(1 - \frac{1}{n}\right)^2} \right) \] ### Step 4: Evaluate the limit inside the parentheses Next, we evaluate the limit inside the parentheses: \[ \sqrt[3]{\left(1 + \frac{1}{n}\right)^2} \approx 1 + \frac{2}{3n} \quad \text{and} \quad \sqrt[3]{\left(1 - \frac{1}{n}\right)^2} \approx 1 - \frac{2}{3n} \] Thus, \[ \sqrt[3]{\left(1 + \frac{1}{n}\right)^2} - \sqrt[3]{\left(1 - \frac{1}{n}\right)^2} \approx \left(1 + \frac{2}{3n}\right) - \left(1 - \frac{2}{3n}\right) = \frac{4}{3n} \] ### Step 5: Substitute back into the limit Now substituting this back: \[ n^{2/3} \cdot \frac{4}{3n} = \frac{4}{3} n^{-1/3} \] ### Step 6: Evaluate the final limit Finally, we take the limit as \( n \to \infty \): \[ \lim_{n \to \infty} \frac{4}{3} n^{-1/3} = 0 \] ### Conclusion Thus, the value of the limit is: \[ \boxed{0} \]

To solve the limit \( \lim_{n \to \infty} \left( \sqrt[3]{(n+1)^2} - \sqrt[3]{(n-1)^2} \right) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ \lim_{n \to \infty} \left( \sqrt[3]{(n+1)^2} - \sqrt[3]{(n-1)^2} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE MAIN|8 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarroo) root3(x)(root3((x+1)^(2))-root3((x-1)^(2)))=

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim_(xrarr1)(root5(x^(2))-2root5x+1)/((x-1)^(2)) is equal to

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

Evaluate lim_(ntooo) (4^(n)+5^(n))^(1//n)

Evaluate lim_(ntooo)(pin)^(2//n)

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

The value of lim_(ntooo)((a-1+root(n)(b))/a)^(n) (agt0,bgt0) is equal to

The value of lim_(ntooo) (1)/(1+nsin^(2)nx)" can be " (n inN)

CENGAGE ENGLISH-LIMITS-Numerical Value Type
  1. The value of lim(xtooo) ((100)/(1-x^(100))-(50)/(1-x^(50))) is .

    Text Solution

    |

  2. If L= lim(xto2) (root(3)(60+x^(2))-4)/(sin(x-2)), then the value of 1/...

    Text Solution

    |

  3. The value of lim(xtooo) ((20^(x)-1)/(19(5^(x))))^(1//x) is .

    Text Solution

    |

  4. The value of lim(ntooo) [root(3)((n+1)^(2))-root(3)((n-1)^(2))] is .

    Text Solution

    |

  5. If L= lim(ntooo) (2xx3^(2)xx2^(3)xx3^(4)...xx2^(n-1)xx3^(n))^((1)/((n^...

    Text Solution

    |

  6. The value of lim(x to oo ) (log(e)(log(e)x))/(e^(sqrt(x))) is . (a) π...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. The value of lim(x to oo ) (x-x^(2)log(e)(1+(1)/(x))) is .

    Text Solution

    |

  9. Let S(n)=1+2+3+...+n " and " P(n)=(S(2))/(S(2)-1).(S(3))/(S(3)-1).(S(4...

    Text Solution

    |

  10. If lim(xto1)(asin(x-1)+bcos(x-1)+4)/(x^(2)-1)=-2, then |a+b| is.

    Text Solution

    |

  11. Let lim(xto1) (x^(a)-ax+a-1)/((x-1)^(2))=f(a). Then the value of f(4) ...

    Text Solution

    |

  12. Number of integral values of k for which lim(xto1) sin^(-1)((k)/(log...

    Text Solution

    |

  13. If lim(xto1) (1+ax+bx^(2))^((e)/((x-1)))=e^(3), then the value of bc i...

    Text Solution

    |

  14. Let f''(x) be continuous at x=0 If lim(xto0) (2f(x)-3af(2x)+bf(8x))/...

    Text Solution

    |

  15. If L=lim(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx), then the value of 1//...

    Text Solution

    |

  16. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  17. If lim(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3), then the value of ln(lim(x...

    Text Solution

    |

  18. The largest value of the non-negative integer a for which lim(xto1) ...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. Let alpha,betainR be such that lim(xto0) (x^(2)sin(betax))/(alphax-sin...

    Text Solution

    |