Home
Class 12
MATHS
If L= lim(ntooo) (2xx3^(2)xx2^(3)xx3^(4)...

If `L= lim_(ntooo) (2xx3^(2)xx2^(3)xx3^(4)...xx2^(n-1)xx3^(n))^((1)/((n^(2)+1)))`, then the value of `L^(4)` is _____________. (a) -1/4 (b) 1/2 (c) 1 (d) none of the above

A

`-(1)/(4)`

B

`(1)/(2)`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we start with the expression given: \[ L = \lim_{n \to \infty} \left( 2 \cdot 3^2 \cdot 2^3 \cdot 3^4 \cdots 2^{n-1} \cdot 3^n \right)^{\frac{1}{n^2 + 1}} \] ### Step 1: Identify the pattern in the product The product consists of alternating terms of powers of 2 and 3. The odd-indexed terms are powers of 2 and the even-indexed terms are powers of 3. ### Step 2: Separate the powers of 2 and 3 We can rewrite the product as: \[ L = \lim_{n \to \infty} \left( \left( 2^1 \cdot 2^3 \cdots 2^{n-1} \right) \cdot \left( 3^2 \cdot 3^4 \cdots 3^n \right) \right)^{\frac{1}{n^2 + 1}} \] ### Step 3: Calculate the sum of the powers of 2 and 3 The powers of 2 can be expressed as: \[ 2^{1 + 3 + 5 + \ldots + (n-1)} \] The number of terms in the series is \( \frac{n}{2} \) (for even \( n \)). The sum of the first \( k \) odd numbers is \( k^2 \), so: \[ 1 + 3 + 5 + \ldots + (n-1) = \left( \frac{n}{2} \right)^2 = \frac{n^2}{4} \] Thus, the contribution from the powers of 2 is: \[ 2^{\frac{n^2}{4}} \] For the powers of 3, we have: \[ 3^{2 + 4 + 6 + \ldots + n} \] The sum of the first \( k \) even numbers is \( k(k + 1) \), so: \[ 2 + 4 + 6 + \ldots + n = \frac{n}{2} \cdot \left( \frac{n}{2} + 1 \right) = \frac{n(n + 2)}{4} \] Thus, the contribution from the powers of 3 is: \[ 3^{\frac{n(n + 2)}{4}} \] ### Step 4: Combine the results Now we can combine these results into the limit expression: \[ L = \lim_{n \to \infty} \left( 2^{\frac{n^2}{4}} \cdot 3^{\frac{n(n + 2)}{4}} \right)^{\frac{1}{n^2 + 1}} \] ### Step 5: Simplify the limit Taking the limit, we have: \[ L = \lim_{n \to \infty} \left( 2^{\frac{n^2}{4(n^2 + 1)}} \cdot 3^{\frac{n(n + 2)}{4(n^2 + 1)}} \right) \] As \( n \to \infty \): \[ \frac{n^2}{4(n^2 + 1)} \to \frac{1}{4} \] \[ \frac{n(n + 2)}{4(n^2 + 1)} \to \frac{1}{4} \] Thus, \[ L = 2^{\frac{1}{4}} \cdot 3^{\frac{1}{4}} = (2 \cdot 3)^{\frac{1}{4}} = 6^{\frac{1}{4}} \] ### Step 6: Calculate \( L^4 \) Now, we need to find \( L^4 \): \[ L^4 = \left( 6^{\frac{1}{4}} \right)^4 = 6 \] ### Final Answer The value of \( L^4 \) is: \[ \boxed{6} \]

To solve the limit problem, we start with the expression given: \[ L = \lim_{n \to \infty} \left( 2 \cdot 3^2 \cdot 2^3 \cdot 3^4 \cdots 2^{n-1} \cdot 3^n \right)^{\frac{1}{n^2 + 1}} \] ### Step 1: Identify the pattern in the product The product consists of alternating terms of powers of 2 and 3. The odd-indexed terms are powers of 2 and the even-indexed terms are powers of 3. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE MAIN|8 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If L=("lim")_(nvecoo)(2x3^2x2^3x3^4 x2^(n-1)x3^n)^1/((n^(2+1)) , then the value of L^4 is

(-1)xx(-2)xx(-3)xx(-4)

(-1)xx(-2)xx(-3)xx(-4)

(-1)xx(-2)xx(-3)xx(-4)

(-1)xx(-2)xx(-3)xx(-4)xx-5

Evaluate lim_(ntooo) (1^(3)+2^(3)+3^(3)+...+n^(3))/(sqrt(4n^(8)+1)).

(-2)xx(-3)xx(-1)xx(-1)

if (9^nxx3^2xx3^n-(27)^n)/((3^3)^5xx2^3)=1/(27), find the value of n

Evaluate : [(-(2)/(3))^(-2)]^(3)xx((1)/(3))^(-4)xx3^(-1)xx(1)/(6)

Prove that: 3^(1/2)xx3^(1/4)xx3^(1/8)xx...=3

CENGAGE ENGLISH-LIMITS-Numerical Value Type
  1. The value of lim(xtooo) ((100)/(1-x^(100))-(50)/(1-x^(50))) is .

    Text Solution

    |

  2. If L= lim(xto2) (root(3)(60+x^(2))-4)/(sin(x-2)), then the value of 1/...

    Text Solution

    |

  3. The value of lim(xtooo) ((20^(x)-1)/(19(5^(x))))^(1//x) is .

    Text Solution

    |

  4. The value of lim(ntooo) [root(3)((n+1)^(2))-root(3)((n-1)^(2))] is .

    Text Solution

    |

  5. If L= lim(ntooo) (2xx3^(2)xx2^(3)xx3^(4)...xx2^(n-1)xx3^(n))^((1)/((n^...

    Text Solution

    |

  6. The value of lim(x to oo ) (log(e)(log(e)x))/(e^(sqrt(x))) is . (a) π...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. The value of lim(x to oo ) (x-x^(2)log(e)(1+(1)/(x))) is .

    Text Solution

    |

  9. Let S(n)=1+2+3+...+n " and " P(n)=(S(2))/(S(2)-1).(S(3))/(S(3)-1).(S(4...

    Text Solution

    |

  10. If lim(xto1)(asin(x-1)+bcos(x-1)+4)/(x^(2)-1)=-2, then |a+b| is.

    Text Solution

    |

  11. Let lim(xto1) (x^(a)-ax+a-1)/((x-1)^(2))=f(a). Then the value of f(4) ...

    Text Solution

    |

  12. Number of integral values of k for which lim(xto1) sin^(-1)((k)/(log...

    Text Solution

    |

  13. If lim(xto1) (1+ax+bx^(2))^((e)/((x-1)))=e^(3), then the value of bc i...

    Text Solution

    |

  14. Let f''(x) be continuous at x=0 If lim(xto0) (2f(x)-3af(2x)+bf(8x))/...

    Text Solution

    |

  15. If L=lim(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx), then the value of 1//...

    Text Solution

    |

  16. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  17. If lim(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3), then the value of ln(lim(x...

    Text Solution

    |

  18. The largest value of the non-negative integer a for which lim(xto1) ...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. Let alpha,betainR be such that lim(xto0) (x^(2)sin(betax))/(alphax-sin...

    Text Solution

    |