Home
Class 12
MATHS
The value of lim(x to oo ) (x-x^(2)log(...

The value of `lim_(x to oo ) (x-x^(2)log_(e)(1+(1)/(x)))` is _______.

A

1

B

`(1)/(2)`

C

`(1)/(4)`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left( x - x^2 \log_e\left(1 + \frac{1}{x}\right) \right) \), we can follow these steps: ### Step 1: Analyze the limit We start by substituting \( x \) directly into the limit: \[ \lim_{x \to \infty} \left( x - x^2 \log_e\left(1 + \frac{1}{x}\right) \right) \] As \( x \) approaches infinity, \( \frac{1}{x} \) approaches 0, so we have: \[ \log_e\left(1 + \frac{1}{x}\right) \to \log_e(1) = 0 \] Thus, we have an indeterminate form of \( \infty - \infty \). ### Step 2: Rewrite the limit To resolve the indeterminate form, we can rewrite the limit: \[ x - x^2 \log_e\left(1 + \frac{1}{x}\right) = x \left(1 - x \log_e\left(1 + \frac{1}{x}\right)\right) \] Now we need to analyze \( x \log_e\left(1 + \frac{1}{x}\right) \) as \( x \to \infty \). ### Step 3: Use Taylor expansion Using the Taylor series expansion for \( \log_e(1 + u) \) around \( u = 0 \): \[ \log_e(1 + u) \approx u - \frac{u^2}{2} + O(u^3) \] Substituting \( u = \frac{1}{x} \): \[ \log_e\left(1 + \frac{1}{x}\right) \approx \frac{1}{x} - \frac{1}{2x^2} + O\left(\frac{1}{x^3}\right) \] Thus, \[ x \log_e\left(1 + \frac{1}{x}\right) \approx 1 - \frac{1}{2x} + O\left(\frac{1}{x^2}\right) \] ### Step 4: Substitute back into the limit Now substituting back into our limit: \[ 1 - x \log_e\left(1 + \frac{1}{x}\right) \approx 1 - \left(1 - \frac{1}{2x} + O\left(\frac{1}{x^2}\right)\right) = \frac{1}{2x} - O\left(\frac{1}{x^2}\right) \] So we have: \[ x \left(1 - x \log_e\left(1 + \frac{1}{x}\right)\right) \approx x \cdot \left(\frac{1}{2x} - O\left(\frac{1}{x^2}\right)\right) = \frac{1}{2} - O\left(\frac{1}{x}\right) \] ### Step 5: Take the limit Taking the limit as \( x \to \infty \): \[ \lim_{x \to \infty} \left(\frac{1}{2} - O\left(\frac{1}{x}\right)\right) = \frac{1}{2} \] ### Final Answer Thus, the value of the limit is: \[ \frac{1}{2} \]

To solve the limit \( \lim_{x \to \infty} \left( x - x^2 \log_e\left(1 + \frac{1}{x}\right) \right) \), we can follow these steps: ### Step 1: Analyze the limit We start by substituting \( x \) directly into the limit: \[ \lim_{x \to \infty} \left( x - x^2 \log_e\left(1 + \frac{1}{x}\right) \right) \] As \( x \) approaches infinity, \( \frac{1}{x} \) approaches 0, so we have: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE MAIN|8 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x to oo ) (log_(e)(log_(e)x))/(e^(sqrt(x))) is _________. (a) π/ 2 (b)0 (c)-π (d)π

Evaluate x lim_(xto2) (x-2)/(log_(a)(x-1)).

The value of lim_(xrarr3) ((x^(3)+27)log_(e)(x-2))/(x^(2)-9) is

The value of lim_(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is

lim_(x rarr oo)e^(-x)x^(2)

Find the value of lim _(x to oo) (x+(1)/(x))e ^(1//x)-x.

The value of lim_(x->oo)((log)_e((log)_e x)/(e^(sqrt(x)))i s___________

The value of lim_(xrarr oo) x{(1)/(e)-((x)/(x+1))^x} , is

The value of lim_(xto oo)(x+2)tan^(-1)(x+2)-(xtan^(-1)x) is

Evaluate lim_(x to oo) (log_(3)3x)^(log_(x)3).

CENGAGE ENGLISH-LIMITS-Numerical Value Type
  1. The value of lim(xtooo) ((100)/(1-x^(100))-(50)/(1-x^(50))) is .

    Text Solution

    |

  2. If L= lim(xto2) (root(3)(60+x^(2))-4)/(sin(x-2)), then the value of 1/...

    Text Solution

    |

  3. The value of lim(xtooo) ((20^(x)-1)/(19(5^(x))))^(1//x) is .

    Text Solution

    |

  4. The value of lim(ntooo) [root(3)((n+1)^(2))-root(3)((n-1)^(2))] is .

    Text Solution

    |

  5. If L= lim(ntooo) (2xx3^(2)xx2^(3)xx3^(4)...xx2^(n-1)xx3^(n))^((1)/((n^...

    Text Solution

    |

  6. The value of lim(x to oo ) (log(e)(log(e)x))/(e^(sqrt(x))) is . (a) π...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. The value of lim(x to oo ) (x-x^(2)log(e)(1+(1)/(x))) is .

    Text Solution

    |

  9. Let S(n)=1+2+3+...+n " and " P(n)=(S(2))/(S(2)-1).(S(3))/(S(3)-1).(S(4...

    Text Solution

    |

  10. If lim(xto1)(asin(x-1)+bcos(x-1)+4)/(x^(2)-1)=-2, then |a+b| is.

    Text Solution

    |

  11. Let lim(xto1) (x^(a)-ax+a-1)/((x-1)^(2))=f(a). Then the value of f(4) ...

    Text Solution

    |

  12. Number of integral values of k for which lim(xto1) sin^(-1)((k)/(log...

    Text Solution

    |

  13. If lim(xto1) (1+ax+bx^(2))^((e)/((x-1)))=e^(3), then the value of bc i...

    Text Solution

    |

  14. Let f''(x) be continuous at x=0 If lim(xto0) (2f(x)-3af(2x)+bf(8x))/...

    Text Solution

    |

  15. If L=lim(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx), then the value of 1//...

    Text Solution

    |

  16. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  17. If lim(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3), then the value of ln(lim(x...

    Text Solution

    |

  18. The largest value of the non-negative integer a for which lim(xto1) ...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. Let alpha,betainR be such that lim(xto0) (x^(2)sin(betax))/(alphax-sin...

    Text Solution

    |