Home
Class 12
MATHS
Let S(n)=1+2+3+...+n " and " P(n)=(S(2))...

Let `S_(n)=1+2+3+...+n " and " P_(n)=(S_(2))/(S_(2)-1).(S_(3))/(S_(3)-1).(S_(4))/(S_(4)-1)...(S_(n))/(S_(n)-1)`, where `n inN,(nge2) Then ``underset(ntooo)limP_(n)`=__________.

A

`(1)/(4)`

B

`(1)/(24)`

C

3

D

`(1)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit of \( P_n \) as \( n \) approaches infinity, where \[ S_n = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \] and \[ P_n = \frac{S_2}{S_2 - 1} \cdot \frac{S_3}{S_3 - 1} \cdot \frac{S_4}{S_4 - 1} \cdots \frac{S_n}{S_n - 1}. \] ### Step 1: Calculate \( S_k \) and \( S_k - 1 \) For each \( k \): \[ S_k = \frac{k(k+1)}{2} \] Thus, \[ S_k - 1 = \frac{k(k+1)}{2} - 1 = \frac{k(k+1) - 2}{2} = \frac{k^2 + k - 2}{2} = \frac{(k-1)(k+2)}{2}. \] ### Step 2: Calculate \( \frac{S_k}{S_k - 1} \) Now we can find \( \frac{S_k}{S_k - 1} \): \[ \frac{S_k}{S_k - 1} = \frac{\frac{k(k+1)}{2}}{\frac{(k-1)(k+2)}{2}} = \frac{k(k+1)}{(k-1)(k+2)}. \] ### Step 3: Write \( P_n \) Now we can express \( P_n \): \[ P_n = \prod_{k=2}^{n} \frac{k(k+1)}{(k-1)(k+2)}. \] ### Step 4: Simplify \( P_n \) We can simplify \( P_n \): \[ P_n = \frac{2 \cdot 3}{1 \cdot 4} \cdot \frac{3 \cdot 4}{2 \cdot 5} \cdot \frac{4 \cdot 5}{3 \cdot 6} \cdots \frac{n(n+1)}{(n-1)(n+2)}. \] Notice that this is a telescoping product. Most terms will cancel out: \[ P_n = \frac{2}{1} \cdot \frac{n(n+1)}{(n-1)(n+2)}. \] ### Step 5: Take the limit as \( n \to \infty \) Now we need to evaluate the limit: \[ \lim_{n \to \infty} P_n = \lim_{n \to \infty} \frac{2 \cdot n(n+1)}{(n-1)(n+2)}. \] As \( n \) approaches infinity, we can simplify: \[ \frac{n(n+1)}{(n-1)(n+2)} \approx \frac{n^2}{n^2} = 1. \] Thus, \[ \lim_{n \to \infty} P_n = 2 \cdot 1 = 2. \] ### Conclusion The limit \( \lim_{n \to \infty} P_n = 2 \). ### Final Answer \[ \text{The limit } \lim_{n \to \infty} P_n = 2. \] ---

To solve the problem, we need to find the limit of \( P_n \) as \( n \) approaches infinity, where \[ S_n = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \] and ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE MAIN|8 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let S_n=1+2+3++n and P_n=(S_2)/(S_2-1)dot(S_3)/(S_3-1)dot(S_4)/(S_4-1)...(S_n)/(S_n-1) Where n in N ,(ngeq2)dot Then ("lim")_(n→oo)P_n=______

If S_(n)=(1^(2)-1+1)(1!)+(2^(2)-2+1)(2!)+...+(n^(2)-n+1)(n!) , then S_(50)=

If S_(n)=1+1/2+1/3+…+1/n(ninN) , then prove that S_(1)+S_(2)+..+S_((n-1))=(nS((n))-n)or(nS((n-1))-n+1)

If S_(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))/(n!) then lim_(n rarr infty) S_(n) is equal to

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

Let S_(n)=""^(n)C_(0)""^(n)C_(1)+""^(n)C_(1)""^(n)C_(2)+…..+""^(n)C_(n-1)""^(n)C_(n). "If" (S_(n+1))/(S_(n))=(15)/(4) , find the sum of all possible values of n (n in N)

If S_n=1^2-2^2+3^2-4^2+5^2-6^2+ ,t h e n S_(40)=-820 b. S_(2n)> S_(2n+2) c. S_(51)=1326 d. S_(2n+1)> S_(2n-1)

If S_n=1^2-2^2+3^2-4^2+5^2-6^2+ ,t h e n S_(40)=-820 b. S_(2n)> S_(2n+2) c. S_(51)=1326 d. S_(2n+1)> S_(2n-1)

In an AP, If S_(n)=n(4n+1), then find the AP.

A sequence S is defined as follows : S_(n)=(S_(n+1)+S_(n-1))/(2) . If S_(1)=15 and S_(4)=10.5, What is S_(2) ?

CENGAGE ENGLISH-LIMITS-Numerical Value Type
  1. The value of lim(xtooo) ((100)/(1-x^(100))-(50)/(1-x^(50))) is .

    Text Solution

    |

  2. If L= lim(xto2) (root(3)(60+x^(2))-4)/(sin(x-2)), then the value of 1/...

    Text Solution

    |

  3. The value of lim(xtooo) ((20^(x)-1)/(19(5^(x))))^(1//x) is .

    Text Solution

    |

  4. The value of lim(ntooo) [root(3)((n+1)^(2))-root(3)((n-1)^(2))] is .

    Text Solution

    |

  5. If L= lim(ntooo) (2xx3^(2)xx2^(3)xx3^(4)...xx2^(n-1)xx3^(n))^((1)/((n^...

    Text Solution

    |

  6. The value of lim(x to oo ) (log(e)(log(e)x))/(e^(sqrt(x))) is . (a) π...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. The value of lim(x to oo ) (x-x^(2)log(e)(1+(1)/(x))) is .

    Text Solution

    |

  9. Let S(n)=1+2+3+...+n " and " P(n)=(S(2))/(S(2)-1).(S(3))/(S(3)-1).(S(4...

    Text Solution

    |

  10. If lim(xto1)(asin(x-1)+bcos(x-1)+4)/(x^(2)-1)=-2, then |a+b| is.

    Text Solution

    |

  11. Let lim(xto1) (x^(a)-ax+a-1)/((x-1)^(2))=f(a). Then the value of f(4) ...

    Text Solution

    |

  12. Number of integral values of k for which lim(xto1) sin^(-1)((k)/(log...

    Text Solution

    |

  13. If lim(xto1) (1+ax+bx^(2))^((e)/((x-1)))=e^(3), then the value of bc i...

    Text Solution

    |

  14. Let f''(x) be continuous at x=0 If lim(xto0) (2f(x)-3af(2x)+bf(8x))/...

    Text Solution

    |

  15. If L=lim(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx), then the value of 1//...

    Text Solution

    |

  16. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  17. If lim(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3), then the value of ln(lim(x...

    Text Solution

    |

  18. The largest value of the non-negative integer a for which lim(xto1) ...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. Let alpha,betainR be such that lim(xto0) (x^(2)sin(betax))/(alphax-sin...

    Text Solution

    |