Home
Class 12
MATHS
If lim(xto1) (1+ax+bx^(2))^((e)/((x-1)))...

If `lim_(xto1) (1+ax+bx^(2))^((e)/((x-1)))=e^(3)`, then the value of bc is _________.

A

`a=2`

B

`a=1`

C

`L=(1)/(64)`

D

L=(1)/(32)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given in the question, we can follow these steps: ### Step 1: Identify the limit expression We start with the limit: \[ \lim_{x \to 1} (1 + ax + bx^2)^{\frac{e}{x-1}} = e^3 \] ### Step 2: Recognize the indeterminate form As \(x\) approaches 1, the expression \(1 + ax + bx^2\) approaches \(1 + a + b\). Thus, we have the form \(1^\infty\) which is an indeterminate form. ### Step 3: Apply the logarithmic limit property We can rewrite the limit using the property of logarithms: \[ \lim_{x \to 1} (1 + ax + bx^2)^{\frac{e}{x-1}} = e^{\lim_{x \to 1} \frac{e}{x-1} \ln(1 + ax + bx^2)} \] Setting this equal to \(e^3\), we have: \[ \lim_{x \to 1} \frac{e}{x-1} \ln(1 + ax + bx^2) = 3 \] ### Step 4: Simplify the logarithmic expression Using the Taylor expansion for \(\ln(1 + u)\) around \(u = 0\): \[ \ln(1 + u) \approx u \quad \text{for small } u \] We can express: \[ \ln(1 + ax + bx^2) \approx ax + bx^2 \quad \text{as } x \to 1 \] Thus, we have: \[ \ln(1 + ax + bx^2) \approx a + b \quad \text{when } x \to 1 \] ### Step 5: Set up the limit Now substituting back into our limit: \[ \lim_{x \to 1} \frac{e}{x-1} (a + b) = 3 \] This implies: \[ e(a + b) = 3 \quad \text{(as } \lim_{x \to 1} \frac{1}{x-1} \text{ diverges)} \] ### Step 6: Solve for \(a + b\) From this, we can deduce: \[ a + b = \frac{3}{e} \] ### Step 7: Use the condition for the limit We also know that for the limit to exist, the expression \(1 + ax + bx^2\) must approach 1 as \(x \to 1\). Therefore: \[ a + b = 0 \quad \text{(for the limit to be valid)} \] This gives us our first equation: 1. \(a + b = 0\) ### Step 8: Solve for \(b\) in terms of \(a\) From \(a + b = 0\), we can express \(b\) as: \[ b = -a \] ### Step 9: Substitute into the second equation Substituting \(b = -a\) into the equation \(a + b = \frac{3}{e}\): \[ a - a = \frac{3}{e} \] This is a contradiction unless we consider the limit behavior. ### Step 10: Analyze the coefficients Now we need to analyze the coefficients of the limit expression: Using L'Hôpital's Rule on: \[ \lim_{x \to 1} \frac{(ax + bx^2)}{(x - 1)} \] We differentiate the numerator and denominator: \[ \lim_{x \to 1} \frac{a + 2bx}{1} = a + 2b \] ### Step 11: Set the limit equal to 3 Setting this equal to 3 gives us: \[ a + 2b = 3 \] ### Step 12: Solve the system of equations Now we have a system of equations: 1. \(a + b = 0\) 2. \(a + 2b = 3\) Substituting \(b = -a\) into the second equation: \[ a + 2(-a) = 3 \implies -a = 3 \implies a = -3 \] Then substituting back: \[ b = -(-3) = 3 \] ### Step 13: Calculate \(bc\) Now we need to find \(bc\): \[ bc = (-3)(3) = -9 \] ### Final Answer The value of \(bc\) is: \[ \boxed{-9} \]

To solve the limit problem given in the question, we can follow these steps: ### Step 1: Identify the limit expression We start with the limit: \[ \lim_{x \to 1} (1 + ax + bx^2)^{\frac{e}{x-1}} = e^3 \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE MAIN|8 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If lim_(x to 1) (1 + ax + bx^(2))^((c )/(x - 1)) = e^(3) , then the value of a + b + bc + 2009 is…….

If lim_(xto0) (1+ax+bx^(2))^(2//x)=e^(3) , then find the values of a and b.

Let lim_(xto1) (x^(a)-ax+a-1)/((x-1)^(2))=f(a) . Then the value of f(4) is_________.

If L=lim_(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx) , then the value of 1//(3L) is ________.

If lim_(x to 0) (1)/(x^(2)) (e^(2mx) - e^(x) - x) = (3)/(2) then the value of m is _____

6. lim_(xto1)(1-x^2)^(1/log(1-x))

If lim_(xto0) (1-cosx)/(e^(ax)-bx-1)=2 then find the values of a and b.

Let lim_(xto1)(x^(a)-ax+a-1)/((x-1)^(2))=f(a) . The value of f(101) equals

If lim_(xto0) ((4x-1)^(1/3)+a+bx)/(x)=1/3 then find the values of a and b.

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.

CENGAGE ENGLISH-LIMITS-Numerical Value Type
  1. The value of lim(xtooo) ((100)/(1-x^(100))-(50)/(1-x^(50))) is .

    Text Solution

    |

  2. If L= lim(xto2) (root(3)(60+x^(2))-4)/(sin(x-2)), then the value of 1/...

    Text Solution

    |

  3. The value of lim(xtooo) ((20^(x)-1)/(19(5^(x))))^(1//x) is .

    Text Solution

    |

  4. The value of lim(ntooo) [root(3)((n+1)^(2))-root(3)((n-1)^(2))] is .

    Text Solution

    |

  5. If L= lim(ntooo) (2xx3^(2)xx2^(3)xx3^(4)...xx2^(n-1)xx3^(n))^((1)/((n^...

    Text Solution

    |

  6. The value of lim(x to oo ) (log(e)(log(e)x))/(e^(sqrt(x))) is . (a) π...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. The value of lim(x to oo ) (x-x^(2)log(e)(1+(1)/(x))) is .

    Text Solution

    |

  9. Let S(n)=1+2+3+...+n " and " P(n)=(S(2))/(S(2)-1).(S(3))/(S(3)-1).(S(4...

    Text Solution

    |

  10. If lim(xto1)(asin(x-1)+bcos(x-1)+4)/(x^(2)-1)=-2, then |a+b| is.

    Text Solution

    |

  11. Let lim(xto1) (x^(a)-ax+a-1)/((x-1)^(2))=f(a). Then the value of f(4) ...

    Text Solution

    |

  12. Number of integral values of k for which lim(xto1) sin^(-1)((k)/(log...

    Text Solution

    |

  13. If lim(xto1) (1+ax+bx^(2))^((e)/((x-1)))=e^(3), then the value of bc i...

    Text Solution

    |

  14. Let f''(x) be continuous at x=0 If lim(xto0) (2f(x)-3af(2x)+bf(8x))/...

    Text Solution

    |

  15. If L=lim(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx), then the value of 1//...

    Text Solution

    |

  16. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  17. If lim(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3), then the value of ln(lim(x...

    Text Solution

    |

  18. The largest value of the non-negative integer a for which lim(xto1) ...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. Let alpha,betainR be such that lim(xto0) (x^(2)sin(betax))/(alphax-sin...

    Text Solution

    |