Home
Class 12
MATHS
Let f''(x) be continuous at x=0 If lim...

Let `f''(x)` be continuous at `x=0`
If `lim_(xto0) (2f(x)-3af(2x)+bf(8x))/(sin^(2)x)` exists and `f(0)ne0,f'(0)ne0`, then the value of `3a//b` is________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we will analyze the limit given in the question and derive the necessary equations to find the value of \( \frac{3a}{b} \). ### Step 1: Understanding the Limit We need to evaluate the limit: \[ \lim_{x \to 0} \frac{2f(x) - 3af(2x) + bf(8x)}{\sin^2 x} \] Given that \( f(0) \neq 0 \) and \( f'(0) \neq 0 \), we know that both the numerator and denominator approach 0 as \( x \to 0 \). ### Step 2: Applying L'Hôpital's Rule Since both the numerator and denominator approach 0, we can apply L'Hôpital's Rule. We differentiate the numerator and denominator. - The derivative of the numerator: \[ \frac{d}{dx}[2f(x) - 3af(2x) + bf(8x)] = 2f'(x) - 3a \cdot 2f'(2x) + b \cdot 8f'(8x) \] This simplifies to: \[ 2f'(x) - 6af'(2x) + 8bf'(8x) \] - The derivative of the denominator: \[ \frac{d}{dx}[\sin^2 x] = 2\sin x \cos x = \sin(2x) \] ### Step 3: Evaluating the Limit Again Now we need to evaluate: \[ \lim_{x \to 0} \frac{2f'(x) - 6af'(2x) + 8bf'(8x)}{\sin(2x)} \] As \( x \to 0 \), \( f'(x) \) approaches \( f'(0) \), and similarly for \( f'(2x) \) and \( f'(8x) \). ### Step 4: Substituting Values Substituting \( x = 0 \): \[ \frac{2f'(0) - 6af'(0) + 8bf'(0)}{0} \] This implies that the numerator must also approach 0 for the limit to exist: \[ 2f'(0) - 6af'(0) + 8bf'(0) = 0 \] Factoring out \( f'(0) \) (since \( f'(0) \neq 0 \)): \[ f'(0)(2 - 6a + 8b) = 0 \] Thus, we have: \[ 2 - 6a + 8b = 0 \quad \text{(1)} \] ### Step 5: Finding Another Equation Returning to the original limit, we can also analyze the first limit we derived: \[ \lim_{x \to 0} \frac{2f(0) - 3af(0) + bf(0)}{0} = 0 \] Factoring out \( f(0) \): \[ f(0)(2 - 3a + b) = 0 \] Since \( f(0) \neq 0 \): \[ 2 - 3a + b = 0 \quad \text{(2)} \] ### Step 6: Solving the System of Equations Now we have two equations: 1. \( 2 - 6a + 8b = 0 \) 2. \( 2 - 3a + b = 0 \) From equation (2): \[ b = 3a - 2 \] Substituting \( b \) into equation (1): \[ 2 - 6a + 8(3a - 2) = 0 \] Expanding: \[ 2 - 6a + 24a - 16 = 0 \] Combining like terms: \[ 18a - 14 = 0 \implies 18a = 14 \implies a = \frac{14}{18} = \frac{7}{9} \] Now substituting \( a \) back to find \( b \): \[ b = 3\left(\frac{7}{9}\right) - 2 = \frac{21}{9} - \frac{18}{9} = \frac{3}{9} = \frac{1}{3} \] ### Step 7: Finding \( \frac{3a}{b} \) Now we calculate: \[ \frac{3a}{b} = \frac{3 \cdot \frac{7}{9}}{\frac{1}{3}} = \frac{\frac{21}{9}}{\frac{1}{3}} = \frac{21}{9} \cdot 3 = \frac{21}{3} = 7 \] ### Final Answer Thus, the value of \( \frac{3a}{b} \) is: \[ \boxed{7} \]

To solve the problem step-by-step, we will analyze the limit given in the question and derive the necessary equations to find the value of \( \frac{3a}{b} \). ### Step 1: Understanding the Limit We need to evaluate the limit: \[ \lim_{x \to 0} \frac{2f(x) - 3af(2x) + bf(8x)}{\sin^2 x} \] Given that \( f(0) \neq 0 \) and \( f'(0) \neq 0 \), we know that both the numerator and denominator approach 0 as \( x \to 0 \). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE MAIN|8 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f^(x) be continuous at x=0 If ("lim")_(xvec0)(2f(x)-3a(f(2x)+bf(8x))/(sin^2x) exists and f(0)!=0,f^(prime)(0)!=0, then the value of (3a)/b is____

Let f''(x) be continuous at x = 0 and f"(0) = 4 then value of lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.

If f(x) is continuous on [0,2] , differentiable in (0,2) ,f(0)=2, f(2)=8 and f'(x) le 3 for all x in (0,2) , then find the value of f(1) .

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then

If f (x) is a thrice differentiable function such that lim _(xto0)(f (4x) -3 f(3x) +3f (2x) -f (x))/(x ^(3))=12 then the vlaue of f '(0) equais to :

If f (x) is a thrice differentiable function such that lim _(xto0)(f (4x) -3 f(3x) +3f (2x) -f (x))/(x ^(3))=12 then the vlaue of f '''(0) equais to :

CENGAGE ENGLISH-LIMITS-Numerical Value Type
  1. The value of lim(xtooo) ((100)/(1-x^(100))-(50)/(1-x^(50))) is .

    Text Solution

    |

  2. If L= lim(xto2) (root(3)(60+x^(2))-4)/(sin(x-2)), then the value of 1/...

    Text Solution

    |

  3. The value of lim(xtooo) ((20^(x)-1)/(19(5^(x))))^(1//x) is .

    Text Solution

    |

  4. The value of lim(ntooo) [root(3)((n+1)^(2))-root(3)((n-1)^(2))] is .

    Text Solution

    |

  5. If L= lim(ntooo) (2xx3^(2)xx2^(3)xx3^(4)...xx2^(n-1)xx3^(n))^((1)/((n^...

    Text Solution

    |

  6. The value of lim(x to oo ) (log(e)(log(e)x))/(e^(sqrt(x))) is . (a) π...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. The value of lim(x to oo ) (x-x^(2)log(e)(1+(1)/(x))) is .

    Text Solution

    |

  9. Let S(n)=1+2+3+...+n " and " P(n)=(S(2))/(S(2)-1).(S(3))/(S(3)-1).(S(4...

    Text Solution

    |

  10. If lim(xto1)(asin(x-1)+bcos(x-1)+4)/(x^(2)-1)=-2, then |a+b| is.

    Text Solution

    |

  11. Let lim(xto1) (x^(a)-ax+a-1)/((x-1)^(2))=f(a). Then the value of f(4) ...

    Text Solution

    |

  12. Number of integral values of k for which lim(xto1) sin^(-1)((k)/(log...

    Text Solution

    |

  13. If lim(xto1) (1+ax+bx^(2))^((e)/((x-1)))=e^(3), then the value of bc i...

    Text Solution

    |

  14. Let f''(x) be continuous at x=0 If lim(xto0) (2f(x)-3af(2x)+bf(8x))/...

    Text Solution

    |

  15. If L=lim(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx), then the value of 1//...

    Text Solution

    |

  16. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  17. If lim(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3), then the value of ln(lim(x...

    Text Solution

    |

  18. The largest value of the non-negative integer a for which lim(xto1) ...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. Let alpha,betainR be such that lim(xto0) (x^(2)sin(betax))/(alphax-sin...

    Text Solution

    |