Home
Class 12
MATHS
If L=lim(xto0) (e^(-x^(2)//2)-cosx)/(x^(...

If `L=lim_(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx)`, then the value of `1//(3L)` is ________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( L = \lim_{x \to 0} \frac{e^{-\frac{x^2}{2}} - \cos x}{x^3 \sin x} \), we will follow these steps: ### Step 1: Expand \( e^{-\frac{x^2}{2}} \) and \( \cos x \) using Taylor series The Taylor series expansion of \( e^{-\frac{x^2}{2}} \) around \( x = 0 \) is: \[ e^{-\frac{x^2}{2}} = 1 - \frac{x^2}{2} + \frac{x^4}{4!} + O(x^6) \] The Taylor series expansion of \( \cos x \) around \( x = 0 \) is: \[ \cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} + O(x^6) \] ### Step 2: Substitute the expansions into the limit expression Substituting these expansions into the limit gives: \[ e^{-\frac{x^2}{2}} - \cos x = \left(1 - \frac{x^2}{2} + \frac{x^4}{4!} + O(x^6)\right) - \left(1 - \frac{x^2}{2} + \frac{x^4}{4!} + O(x^6)\right) \] The linear terms cancel out, so we need to look at the next higher order terms: \[ e^{-\frac{x^2}{2}} - \cos x = O(x^6) \] ### Step 3: Simplify the numerator Since both series are equal up to \( O(x^4) \), we find that: \[ e^{-\frac{x^2}{2}} - \cos x = \frac{x^4}{24} + O(x^6) \] ### Step 4: Expand \( \sin x \) using Taylor series The Taylor series expansion of \( \sin x \) around \( x = 0 \) is: \[ \sin x = x - \frac{x^3}{6} + O(x^5) \] ### Step 5: Substitute into the limit expression Now substituting into the limit: \[ x^3 \sin x = x^3 \left(x - \frac{x^3}{6} + O(x^5)\right) = x^4 - \frac{x^6}{6} + O(x^8) \] ### Step 6: Write the limit expression Now we can write the limit: \[ L = \lim_{x \to 0} \frac{\frac{x^4}{24} + O(x^6)}{x^4 - \frac{x^6}{6} + O(x^8)} \] ### Step 7: Factor out \( x^4 \) Factoring out \( x^4 \) from both the numerator and denominator: \[ L = \lim_{x \to 0} \frac{\frac{1}{24} + O(x^2)}{1 - \frac{x^2}{6} + O(x^4)} \] ### Step 8: Evaluate the limit As \( x \to 0 \), the higher order terms vanish: \[ L = \frac{\frac{1}{24}}{1} = \frac{1}{24} \] ### Step 9: Calculate \( \frac{1}{3L} \) Now, we can find \( \frac{1}{3L} \): \[ \frac{1}{3L} = \frac{1}{3 \cdot \frac{1}{24}} = \frac{24}{3} = 8 \] Thus, the value of \( \frac{1}{3L} \) is \( \boxed{8} \). ---

To solve the limit \( L = \lim_{x \to 0} \frac{e^{-\frac{x^2}{2}} - \cos x}{x^3 \sin x} \), we will follow these steps: ### Step 1: Expand \( e^{-\frac{x^2}{2}} \) and \( \cos x \) using Taylor series The Taylor series expansion of \( e^{-\frac{x^2}{2}} \) around \( x = 0 \) is: \[ e^{-\frac{x^2}{2}} = 1 - \frac{x^2}{2} + \frac{x^4}{4!} + O(x^6) \] The Taylor series expansion of \( \cos x \) around \( x = 0 \) is: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE MAIN|8 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If L=lim_(x->0)(e^(-(x^2/2))-cosx)/(x^3 sinx), then the value of 1/(3L) is

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

If L=lim_(xrarr0)((e^(-x^(2)/2)-cosx)/(x^(2)tan^(2)x)) , then the value of 3L is equal to

If L= lim_(xto2) (root(3)(60+x^(2))-4)/(sin(x-2)) , then the value of 1//L is________.

lim_(xto0)((e^(x)-1)/x)^(1//x)

If L=lim_(x->2) ((10-x)^(1/3) -2)/(x-2), then the value of |1/(4L)| is

Evaluate lim_(xto0) (e^(x)-e^(xcosx))/(x+sinx).

If lim_(xto0) (1-cosx)/(e^(ax)-bx-1)=2 then find the values of a and b.

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

If L= lim_(xto0) (sin2x+asinx)/(x^(3)) is finite, then find the value of a and L.

CENGAGE ENGLISH-LIMITS-Numerical Value Type
  1. The value of lim(xtooo) ((100)/(1-x^(100))-(50)/(1-x^(50))) is .

    Text Solution

    |

  2. If L= lim(xto2) (root(3)(60+x^(2))-4)/(sin(x-2)), then the value of 1/...

    Text Solution

    |

  3. The value of lim(xtooo) ((20^(x)-1)/(19(5^(x))))^(1//x) is .

    Text Solution

    |

  4. The value of lim(ntooo) [root(3)((n+1)^(2))-root(3)((n-1)^(2))] is .

    Text Solution

    |

  5. If L= lim(ntooo) (2xx3^(2)xx2^(3)xx3^(4)...xx2^(n-1)xx3^(n))^((1)/((n^...

    Text Solution

    |

  6. The value of lim(x to oo ) (log(e)(log(e)x))/(e^(sqrt(x))) is . (a) π...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. The value of lim(x to oo ) (x-x^(2)log(e)(1+(1)/(x))) is .

    Text Solution

    |

  9. Let S(n)=1+2+3+...+n " and " P(n)=(S(2))/(S(2)-1).(S(3))/(S(3)-1).(S(4...

    Text Solution

    |

  10. If lim(xto1)(asin(x-1)+bcos(x-1)+4)/(x^(2)-1)=-2, then |a+b| is.

    Text Solution

    |

  11. Let lim(xto1) (x^(a)-ax+a-1)/((x-1)^(2))=f(a). Then the value of f(4) ...

    Text Solution

    |

  12. Number of integral values of k for which lim(xto1) sin^(-1)((k)/(log...

    Text Solution

    |

  13. If lim(xto1) (1+ax+bx^(2))^((e)/((x-1)))=e^(3), then the value of bc i...

    Text Solution

    |

  14. Let f''(x) be continuous at x=0 If lim(xto0) (2f(x)-3af(2x)+bf(8x))/...

    Text Solution

    |

  15. If L=lim(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx), then the value of 1//...

    Text Solution

    |

  16. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  17. If lim(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3), then the value of ln(lim(x...

    Text Solution

    |

  18. The largest value of the non-negative integer a for which lim(xto1) ...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. Let alpha,betainR be such that lim(xto0) (x^(2)sin(betax))/(alphax-sin...

    Text Solution

    |