Home
Class 12
MATHS
If lim(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(...

If `lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3)`, then the value of `ln(lim_(xto0) [1+(f(x))/(x)]^(1//x))` is _________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given limit: \[ \lim_{x \to 0} \left[ 1 + x + \frac{f(x)}{x} \right]^{\frac{1}{x}} = e^3 \] ### Step 1: Analyze the limit We notice that as \( x \to 0 \), the expression \( 1 + x + \frac{f(x)}{x} \) approaches \( 1 + 0 + \frac{f(0)}{0} \), which is an indeterminate form of \( 1^{\infty} \). ### Step 2: Rewrite the limit Using the property of limits, we can express this limit in a more manageable form: \[ \lim_{x \to 0} \left[ 1 + x + \frac{f(x)}{x} \right]^{\frac{1}{x}} = e^{\lim_{x \to 0} \left( \frac{f(x)}{x} + x - 1 \right)} \] ### Step 3: Simplify the expression We can rewrite the limit as: \[ \lim_{x \to 0} \left( \frac{f(x)}{x} + x \right) = 3 \] This implies: \[ \lim_{x \to 0} \frac{f(x)}{x} = 3 - \lim_{x \to 0} x = 3 \] ### Step 4: Find the limit of \( \frac{f(x)}{x} \) From the above, we can conclude that: \[ \lim_{x \to 0} \frac{f(x)}{x} = 3 \] ### Step 5: Find \( \lim_{x \to 0} \left[ 1 + \frac{f(x)}{x} \right]^{\frac{1}{x}} \) Now we need to find: \[ \lim_{x \to 0} \left[ 1 + \frac{f(x)}{x} \right]^{\frac{1}{x}} \] This can also be rewritten as: \[ \lim_{x \to 0} \left[ 1 + \frac{f(x)}{x} \right]^{\frac{1}{x}} = e^{\lim_{x \to 0} \left( \frac{f(x)}{x} - 1 \right)} \] ### Step 6: Substitute the limit Using the previous result: \[ \lim_{x \to 0} \frac{f(x)}{x} = 3 \implies \lim_{x \to 0} \left( \frac{f(x)}{x} - 1 \right) = 2 \] Thus, we have: \[ \lim_{x \to 0} \left[ 1 + \frac{f(x)}{x} \right]^{\frac{1}{x}} = e^2 \] ### Step 7: Find \( \ln \left( \lim_{x \to 0} \left[ 1 + \frac{f(x)}{x} \right]^{\frac{1}{x}} \right) \) Now we need to find: \[ \ln \left( \lim_{x \to 0} \left[ 1 + \frac{f(x)}{x} \right]^{\frac{1}{x}} \right) = \ln(e^2) = 2 \] ### Final Answer Thus, the value of \( \ln \left( \lim_{x \to 0} \left[ 1 + \frac{f(x)}{x} \right]^{\frac{1}{x}} \right) \) is: \[ \boxed{2} \]

To solve the problem step by step, we start with the given limit: \[ \lim_{x \to 0} \left[ 1 + x + \frac{f(x)}{x} \right]^{\frac{1}{x}} = e^3 \] ### Step 1: Analyze the limit We notice that as \( x \to 0 \), the expression \( 1 + x + \frac{f(x)}{x} \) approaches \( 1 + 0 + \frac{f(0)}{0} \), which is an indeterminate form of \( 1^{\infty} \). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE MAIN|8 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)((e^(x)-1)/x)^(1//x)

Find the value of lim_(xto0^(+)) (sinx)^((1)/(x)) .

The value of lim_(xto0)(x cosx-log(1+x))/(x^(2)) is

The value of lim_(xto0)(1/(x^(2))-cotx) is

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

The value of lim_(xto 0)(e-(1+x)^(1//x))/(tanx) is

The value of lim_(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.

Slove lim_(xto0)((1+x)^(1//x)-e)/x

lim_(xto0) (1- cos 2x)/(x^(2)) = _______

CENGAGE ENGLISH-LIMITS-Numerical Value Type
  1. The value of lim(xtooo) ((100)/(1-x^(100))-(50)/(1-x^(50))) is .

    Text Solution

    |

  2. If L= lim(xto2) (root(3)(60+x^(2))-4)/(sin(x-2)), then the value of 1/...

    Text Solution

    |

  3. The value of lim(xtooo) ((20^(x)-1)/(19(5^(x))))^(1//x) is .

    Text Solution

    |

  4. The value of lim(ntooo) [root(3)((n+1)^(2))-root(3)((n-1)^(2))] is .

    Text Solution

    |

  5. If L= lim(ntooo) (2xx3^(2)xx2^(3)xx3^(4)...xx2^(n-1)xx3^(n))^((1)/((n^...

    Text Solution

    |

  6. The value of lim(x to oo ) (log(e)(log(e)x))/(e^(sqrt(x))) is . (a) π...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. The value of lim(x to oo ) (x-x^(2)log(e)(1+(1)/(x))) is .

    Text Solution

    |

  9. Let S(n)=1+2+3+...+n " and " P(n)=(S(2))/(S(2)-1).(S(3))/(S(3)-1).(S(4...

    Text Solution

    |

  10. If lim(xto1)(asin(x-1)+bcos(x-1)+4)/(x^(2)-1)=-2, then |a+b| is.

    Text Solution

    |

  11. Let lim(xto1) (x^(a)-ax+a-1)/((x-1)^(2))=f(a). Then the value of f(4) ...

    Text Solution

    |

  12. Number of integral values of k for which lim(xto1) sin^(-1)((k)/(log...

    Text Solution

    |

  13. If lim(xto1) (1+ax+bx^(2))^((e)/((x-1)))=e^(3), then the value of bc i...

    Text Solution

    |

  14. Let f''(x) be continuous at x=0 If lim(xto0) (2f(x)-3af(2x)+bf(8x))/...

    Text Solution

    |

  15. If L=lim(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx), then the value of 1//...

    Text Solution

    |

  16. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  17. If lim(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3), then the value of ln(lim(x...

    Text Solution

    |

  18. The largest value of the non-negative integer a for which lim(xto1) ...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. Let alpha,betainR be such that lim(xto0) (x^(2)sin(betax))/(alphax-sin...

    Text Solution

    |