Home
Class 12
MATHS
lim(xto0) ((1-cos2x)(3+cosx))/(xtan4x) i...

`lim_(xto0) ((1-cos2x)(3+cosx))/(xtan4x)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{(1 - \cos(2x))(3 + \cos x)}{x \tan(4x)} \), we can follow these steps: ### Step 1: Identify the form of the limit First, we substitute \( x = 0 \) into the expression: - The numerator becomes \( 1 - \cos(0) = 1 - 1 = 0 \). - The denominator becomes \( 0 \cdot \tan(0) = 0 \). This gives us a \( \frac{0}{0} \) indeterminate form, so we need to simplify the expression. **Hint:** Always check the limit by substituting the value first to determine if it's an indeterminate form. ### Step 2: Simplify the numerator Using the trigonometric identity, we know: \[ 1 - \cos(2x) = 2 \sin^2(x) \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{(2 \sin^2(x))(3 + \cos x)}{x \tan(4x)} \] **Hint:** Use trigonometric identities to simplify expressions involving cosine. ### Step 3: Rewrite the tangent function Recall that \( \tan(4x) = \frac{\sin(4x)}{\cos(4x)} \). Therefore, we can express the limit as: \[ \lim_{x \to 0} \frac{2 \sin^2(x)(3 + \cos x)}{x \cdot \frac{\sin(4x)}{\cos(4x)}} \] This simplifies to: \[ \lim_{x \to 0} \frac{2 \sin^2(x)(3 + \cos x) \cos(4x)}{x \sin(4x)} \] **Hint:** Remember to express tangent in terms of sine and cosine for simplification. ### Step 4: Factor out the limit Now, we can separate the limit: \[ \lim_{x \to 0} \frac{2 \sin^2(x)}{x} \cdot \frac{(3 + \cos x) \cos(4x)}{\sin(4x)} \] ### Step 5: Apply limit properties Using the known limits: - \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \) - \( \lim_{x \to 0} \frac{\sin(4x)}{4x} = 1 \) We can rewrite \( \frac{2 \sin^2(x)}{x} \) as: \[ 2 \cdot \frac{\sin^2(x)}{x^2} \cdot x \] Thus, the limit becomes: \[ \lim_{x \to 0} 2 \cdot \frac{\sin^2(x)}{x^2} \cdot (3 + \cos x) \cdot \frac{\cos(4x)}{4} \cdot \frac{4}{\sin(4x)} \] ### Step 6: Evaluate the limit As \( x \to 0 \): - \( \frac{\sin^2(x)}{x^2} \to 1 \) - \( 3 + \cos(0) = 3 + 1 = 4 \) - \( \cos(0) = 1 \) - \( \frac{4}{\sin(4x)} \to 1 \) Putting it all together: \[ L = 2 \cdot 1 \cdot 4 \cdot 1 \cdot 1 = 8 \] ### Final Result Thus, the limit is: \[ \boxed{2} \]

To solve the limit \( \lim_{x \to 0} \frac{(1 - \cos(2x))(3 + \cos x)}{x \tan(4x)} \), we can follow these steps: ### Step 1: Identify the form of the limit First, we substitute \( x = 0 \) into the expression: - The numerator becomes \( 1 - \cos(0) = 1 - 1 = 0 \). - The denominator becomes \( 0 \cdot \tan(0) = 0 \). This gives us a \( \frac{0}{0} \) indeterminate form, so we need to simplify the expression. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Numerical Value Type|26 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)((1-cosx)(3+cosx))/(x tan 4x) is equal to

(lim)_(xrarr0)((1-cos2x)(3+cosx)/(xtan4x)) is equal to (1) 1/2 (2) 1 (3) 2 (4) -1/4

The value of lim_(xrarr0)(((1-cos4x)(5+cosx))/(xtan5x)) is equal to

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

lim_(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-

lim_(xto0)(1-cos(x^(2)))/(x^(3)(4^(x)-1)) is equal to:

Lt_(xto0)((1-cos2x)sin5x)/(x^(2)sin3x) is equal to (i) (6)/(5) (ii) 5/6 (iii) 10/3 (iv) 3/10

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

lim_(xto0) (xcot(4x))/(sin^2x cot^2(2x)) is equal to

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to