Home
Class 12
MATHS
lim(xto0) (sin(picos^(2)x))/(x^(2)) is e...

`lim_(xto0) (sin(picos^(2)x))/(x^(2))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2} \), we can follow these steps: ### Step 1: Rewrite the limit Let \( L = \lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2} \). ### Step 2: Substitute \( \cos^2 x \) We know that as \( x \to 0 \), \( \cos^2 x \to 1 \). Thus, we can rewrite the limit: \[ L = \lim_{x \to 0} \frac{\sin(\pi (1 - \sin^2 x))}{x^2} \] This simplifies to: \[ L = \lim_{x \to 0} \frac{\sin(\pi - \pi \sin^2 x)}{x^2} \] ### Step 3: Use the sine subtraction identity Using the identity \( \sin(\pi - \theta) = \sin(\theta) \), we can rewrite the limit: \[ L = \lim_{x \to 0} \frac{\sin(\pi \sin^2 x)}{x^2} \] ### Step 4: Recognize the form As \( x \to 0 \), \( \sin^2 x \to 0 \), so we have a \( \frac{0}{0} \) form. We can apply L'Hôpital's Rule or use the limit property: \[ \lim_{u \to 0} \frac{\sin(u)}{u} = 1 \] We rewrite the limit: \[ L = \lim_{x \to 0} \frac{\sin(\pi \sin^2 x)}{\pi \sin^2 x} \cdot \frac{\pi \sin^2 x}{x^2} \] ### Step 5: Evaluate the first limit The first part \( \lim_{x \to 0} \frac{\sin(\pi \sin^2 x)}{\pi \sin^2 x} \) approaches 1 as \( x \to 0 \). ### Step 6: Evaluate the second limit Now we need to evaluate \( \lim_{x \to 0} \frac{\sin^2 x}{x^2} \): \[ \lim_{x \to 0} \frac{\sin^2 x}{x^2} = \left( \lim_{x \to 0} \frac{\sin x}{x} \right)^2 = 1^2 = 1 \] ### Step 7: Combine the results Putting it all together: \[ L = 1 \cdot \pi \cdot 1 = \pi \] ### Final Result Thus, the limit is: \[ \lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2} = \pi \] ---

To solve the limit \( \lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2} \), we can follow these steps: ### Step 1: Rewrite the limit Let \( L = \lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2} \). ### Step 2: Substitute \( \cos^2 x \) We know that as \( x \to 0 \), \( \cos^2 x \to 1 \). Thus, we can rewrite the limit: \[ ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Numerical Value Type|26 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

(lim)_(xrarr0)(sin(picos^2x)/(x^2)) is equal to (a) -pi (b) pi (c) pi/2 (d) 1

lim_(xto0)(sin(picos^(2)(tan(sinx))))/(x^(2)) is equal to

lim_(xrarr0) (sin(picos^2x))/(x^2) equals

Evaluate lim_(xto0) sin(picos^(2)x)/(x^(2)).

Evaluate lim_(xto 0)(sin (picos^(2)x))/(x^(2))

lim_(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-

The value of lim_(x to pi) (tan(picos^2 x))/(sin^2 x) is equal to

The value of lim_(xto0)(x sin (sinxx)-sin^(2)x)/(x^(6)) equals

lim_(xto0) (xcot(4x))/(sin^2x cot^2(2x)) is equal to

lim_(xto0)(1-cos(x^(2)))/(x^(3)(4^(x)-1)) is equal to: