Home
Class 12
MATHS
Let p=lim(xto0^(+))(1+tan^(2)sqrt(x))^((...

Let `p=lim_(xto0^(+))(1+tan^(2)sqrt(x))^((1)/(2x))`. Then `log_(e)p` is equal to

Text Solution

Verified by Experts

The correct Answer is:
B

`p=underset(xto0^(+))lim(1+tan^(2)sqrt(x))^((1)/(2x))(1^(oo)" form")`
`=e^(underset(xto0)lim(1+tan^(2)sqrt(x)-1)(1)/(2x))=e^(underset(xto0+)lim((tansqrt(x))^(2))/(2(sqrt(x))^(2)))=e^((1)/(2))`
`:." "log_(e)p=log_(e)^((1)/(2))=(1)/(2)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Numerical Value Type|26 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0)(1+tan^(2)sqrt(x))^(1/(2x))

Evaluate lim_(xto0) (sqrt(2+x)-sqrt(2))/(x).

Evaluate lim_(xto0)((1+5x^(2))/(1+3x^(2)))^(1//x^(2))

Evaluate lim_(xto0) (2^(x)-1)/(sqrt(1+x)-1).

Evaluate lim_(xto0) (sqrt(2)-sqrt(1+cosx))/(sin^(2)x).

lim _(xto0)(((1+ x )^(2/x))/(e ^(2)))^((4)/(sin x)) is :

Evaluate lim_(xto0^(+)) (x)^((1)/(log_(e)sinx)).

lim_(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-

lim_(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

Evaluate lim_(xto0)(sin^(-1)x-tan^(-1)x)/(x^(3)).