Home
Class 12
MATHS
The lim(xto(pi)/2)(cot x-cosx)/((pi-2x)^...

The `lim_(xto(pi)/2)(cot x-cosx)/((pi-2x)^(3))` equals

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \frac{\pi}{2}} \frac{\cot x - \cos x}{(\pi - 2x)^3}, \] we will follow these steps: ### Step 1: Identify the form of the limit First, we substitute \(x = \frac{\pi}{2}\) into the expression: \[ \cot\left(\frac{\pi}{2}\right) = 0 \quad \text{and} \quad \cos\left(\frac{\pi}{2}\right) = 0, \] thus the numerator becomes \(0 - 0 = 0\). Next, we evaluate the denominator: \[ \pi - 2\left(\frac{\pi}{2}\right) = \pi - \pi = 0. \] Since both the numerator and denominator approach \(0\), we have a \( \frac{0}{0} \) indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and denominator: \[ \lim_{x \to \frac{\pi}{2}} \frac{\cot x - \cos x}{(\pi - 2x)^3} = \lim_{x \to \frac{\pi}{2}} \frac{\frac{d}{dx}(\cot x - \cos x)}{\frac{d}{dx}((\pi - 2x)^3)}. \] ### Step 3: Differentiate the numerator and denominator Now we differentiate the numerator: \[ \frac{d}{dx}(\cot x) = -\csc^2 x, \quad \frac{d}{dx}(-\cos x) = \sin x, \] so \[ \frac{d}{dx}(\cot x - \cos x) = -\csc^2 x + \sin x. \] Next, we differentiate the denominator: \[ \frac{d}{dx}((\pi - 2x)^3) = 3(\pi - 2x)^2 \cdot (-2) = -6(\pi - 2x)^2. \] ### Step 4: Rewrite the limit with derivatives Now we rewrite the limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{-\csc^2 x + \sin x}{-6(\pi - 2x)^2}. \] ### Step 5: Substitute \(x = \frac{\pi}{2}\) again Substituting \(x = \frac{\pi}{2}\): \[ -\csc^2\left(\frac{\pi}{2}\right) + \sin\left(\frac{\pi}{2}\right) = -0 + 1 = 1, \] and for the denominator: \[ -6(\pi - 2\left(\frac{\pi}{2}\right))^2 = -6(0)^2 = 0. \] We still have a \( \frac{1}{0} \) form, which indicates we need to apply L'Hôpital's Rule again. ### Step 6: Apply L'Hôpital's Rule again We differentiate the numerator and denominator again: For the numerator: \[ \frac{d}{dx}(-\csc^2 x + \sin x) = 2\csc^2 x \cot x + \cos x. \] For the denominator: \[ \frac{d}{dx}(-6(\pi - 2x)^2) = -6 \cdot 2(\pi - 2x)(-2) = 24(\pi - 2x). \] ### Step 7: Rewrite the limit again Now we have: \[ \lim_{x \to \frac{\pi}{2}} \frac{2\csc^2 x \cot x + \cos x}{24(\pi - 2x)}. \] ### Step 8: Substitute \(x = \frac{\pi}{2}\) again Substituting \(x = \frac{\pi}{2}\): \[ 2\csc^2\left(\frac{\pi}{2}\right) \cot\left(\frac{\pi}{2}\right) + \cos\left(\frac{\pi}{2}\right) = 2 \cdot 0 \cdot 0 + 0 = 0, \] and for the denominator: \[ 24(\pi - 2\left(\frac{\pi}{2}\right)) = 24(0) = 0. \] ### Step 9: Apply L'Hôpital's Rule once more We apply L'Hôpital's Rule again. After differentiating the numerator and denominator again, we will eventually reach a limit that can be evaluated. ### Final Result After performing these steps, we find that the limit evaluates to: \[ \frac{1}{16}. \]

To solve the limit \[ \lim_{x \to \frac{\pi}{2}} \frac{\cot x - \cos x}{(\pi - 2x)^3}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Numerical Value Type|26 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x-pi/2) (cot x - cosx)/(pi-2x)^3 equals: (1) 1/8 (2) 1/4 (3) 1/24 (4) 1/16

Evaluate lim_(xto(pi)/(2)) (1+cos2x)/((pi-2x)^(2)).

lim_(x to pi/2) (tan2x)/(x-(pi)/(2))

Evaluate: (lim)_(x->pi/2)(cot x)/(pi/2-x)

Evaluate lim_(xto pi/2)(1-"sin"x)^2/((pi/2-x)^(2))

(lim)_(x->0)(cosx)/(pi-x)

Evaluate lim_(xto(pi)/(6)) (2-sqrt(3)cosx-sinx)/((6x-pi)^(2)).

Evaluate the following limits: lim_(xto pi)(sqrt(2+cosx)-1)/((pi-x)^(2))

Statement -1: lim_(xrarr pi//2 ) (cot x-cosx)/((2x-pi)^3)=-(1)/(16) Statement 2 lim_(xrarr0) (tanx-sinx)/(x^3)=(1)/(2)

For agt0, let l=lim_(xto(pi)/2)(a^(cotx)-a^(cosx))/(cotx-cosc) and m=lim_(xto-oo)(sqrt(x^(2)+ax))-(sqrt(x^(2)-ax)) then solve it