Home
Class 12
MATHS
Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)...

Let `f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x))` for `x!=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \frac{(1 - x)(1 + |1 - x|)}{|1 - x|} \cos\left(\frac{1}{1 - x}\right) \) for \( x \neq 1 \) and find the limits as \( x \) approaches 1 from the right (1+) and from the left (1-). ### Step 1: Calculate the limit as \( x \to 1^+ \) Let \( x = 1 + h \) where \( h \to 0^+ \). Then we have: \[ f(1 + h) = \frac{(1 - (1 + h))(1 + |1 - (1 + h)|)}{|1 - (1 + h)|} \cos\left(\frac{1}{1 - (1 + h)}\right) \] This simplifies to: \[ f(1 + h) = \frac{(-h)(1 + | - h|)}{| - h|} \cos\left(\frac{1}{-h}\right) \] Since \( h \) is positive, \( | - h| = h \). Thus: \[ f(1 + h) = \frac{(-h)(1 + h)}{h} \cos\left(-\frac{1}{h}\right) \] This simplifies further to: \[ f(1 + h) = -(1 + h) \cos\left(\frac{1}{h}\right) \] Now, we need to find: \[ \lim_{h \to 0^+} -(1 + h) \cos\left(\frac{1}{h}\right) \] As \( h \to 0^+ \), \( -(1 + h) \) approaches -1, and \( \cos\left(\frac{1}{h}\right) \) oscillates between -1 and 1. Therefore, the limit does not exist. ### Step 2: Calculate the limit as \( x \to 1^- \) Let \( x = 1 - h \) where \( h \to 0^+ \). Then we have: \[ f(1 - h) = \frac{(1 - (1 - h))(1 + |1 - (1 - h)|)}{|1 - (1 - h)|} \cos\left(\frac{1}{1 - (1 - h)}\right) \] This simplifies to: \[ f(1 - h) = \frac{h(1 + |h|)}{|h|} \cos\left(\frac{1}{h}\right) \] Since \( h \) is positive, \( |h| = h \). Thus: \[ f(1 - h) = \frac{h(1 + h)}{h} \cos\left(\frac{1}{h}\right) = (1 + h) \cos\left(\frac{1}{h}\right) \] Now, we need to find: \[ \lim_{h \to 0^+} (1 + h) \cos\left(\frac{1}{h}\right) \] As \( h \to 0^+ \), \( (1 + h) \) approaches 1, and \( \cos\left(\frac{1}{h}\right) \) oscillates between -1 and 1. Therefore, the limit approaches 0. ### Final Results - \( \lim_{x \to 1^+} f(x) \) does not exist. - \( \lim_{x \to 1^-} f(x) = 0 \). ### Summary Thus, the final answer is: - \( \lim_{x \to 1^+} f(x) \) does not exist. - \( \lim_{x \to 1^-} f(x) = 0 \).

To solve the problem, we need to analyze the function \( f(x) = \frac{(1 - x)(1 + |1 - x|)}{|1 - x|} \cos\left(\frac{1}{1 - x}\right) \) for \( x \neq 1 \) and find the limits as \( x \) approaches 1 from the right (1+) and from the left (1-). ### Step 1: Calculate the limit as \( x \to 1^+ \) Let \( x = 1 + h \) where \( h \to 0^+ \). Then we have: \[ f(1 + h) = \frac{(1 - (1 + h))(1 + |1 - (1 + h)|)}{|1 - (1 + h)|} \cos\left(\frac{1}{1 - (1 + h)}\right) ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=|x-1| . Then,

Let f(x)=(1)/(1-x)."Then (fo(fof)) (x)"

Let f(x)= {{:((x)/(1+|x|)",", |x| ge1), ((x)/(1-|x|)",", |x| lt 1):}, then domain of f'(x) is:

For x in RR - {0, 1}, let f_1(x) =1/x, f_2(x) = 1-x and f_3(x) = 1/(1-x) be three given functions. If a function, J(x) satisfies (f_2oJ_of_1)(x) = f_3(x) then J(x) is equal to :

Let f(x)=|x|+|x-1|, then

Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)) . Then,

Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)) . Then,

let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x})) where {x} denotes the fractional part of x then

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

Let f(x) = ([x] - ["sin" x])/(1 - "sin" [cos x]) and g (x) = (1)/(f(x)) and [] represents the greatest integer function, then

CENGAGE ENGLISH-LIMITS-Multiple Correct Answers Type
  1. Let f(x)={{:(x^(n)sin(1//x^(2))","xne0),(0", "x=0):},...

    Text Solution

    |

  2. If L=lim(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then

    Text Solution

    |

  3. Which of the following is true ({.} denotes the fractional part of the...

    Text Solution

    |

  4. Which of the following is/are correct?

    Text Solution

    |

  5. If lim(xto1) (2-x+a[x-1]+b[1+x]) exists, then a and b can take the val...

    Text Solution

    |

  6. L=("lim")(xveca)(|2sinx-1|)/(2sinx-1)dotT h e n limit does not exist ...

    Text Solution

    |

  7. Let f(x)=lim(ntooo) (x)/(x^(2n)+1). Then f has

    Text Solution

    |

  8. lim(ntooo) (-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to (n inN)

    Text Solution

    |

  9. Given a real-valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2)...

    Text Solution

    |

  10. If f(x)=(3x^2+a x+a+1)/(x^2+x-2), then which of the following can be c...

    Text Solution

    |

  11. The value of lim(ntooo) (1)/(1+nsin^(2)nx)" can be " (n inN)

    Text Solution

    |

  12. Lim x tending 5f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest i...

    Text Solution

    |

  13. Given lim(x to 0)(f(x))/(x^(2))=2, where [.] denotes the greatest inte...

    Text Solution

    |

  14. If f(a)=lim(xto2)(sin^(x)a+cos^(x)a)^((1)/((x-2)))" for "ain[0,(pi)/(2...

    Text Solution

    |

  15. Let L=("lim")(xvec0)(a-sqrt(a^2-x^2)-(x^2)/4)/(x^4),a > 0. IfLi sfin i...

    Text Solution

    |

  16. Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x)) for x!=1

    Text Solution

    |

  17. If A=lim(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim(x to 0)([|...

    Text Solution

    |

  18. If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the gre...

    Text Solution

    |

  19. Assume that lim(thetararr-1) f(theta) exists and (theta^(2)+theta-2)/(...

    Text Solution

    |

  20. Let f(x)=lim(nrarroo) (tan^(-1)(tanx))/(1+(log(x)x)^(n)),x ne(2n+1)(pi...

    Text Solution

    |