Home
Class 12
MATHS
The largest value of the non-negative in...

The largest value of the non-negative integer a for which
`lim_(xto1) {(-ax+sin(x-1)+a)/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=(1)/(4)` is ___________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to find the largest non-negative integer \( a \) such that \[ \lim_{x \to 1} \left( \frac{-ax + \sin(x-1) + a}{x + \sin(x-1) - 1} \right)^{\frac{1-x}{1-\sqrt{x}}} = \frac{1}{4}. \] ### Step 1: Simplifying the Limit Expression First, we analyze the limit as \( x \) approaches 1. We can rewrite the limit expression: \[ \lim_{x \to 1} \frac{-ax + \sin(x-1) + a}{x + \sin(x-1) - 1}. \] As \( x \to 1 \), both the numerator and denominator approach 0, which suggests we can apply L'Hôpital's Rule or simplify the expression further. ### Step 2: Expanding \( \sin(x-1) \) Using the Taylor series expansion for \( \sin(x-1) \) around \( x = 1 \): \[ \sin(x-1) \approx (x-1) - \frac{(x-1)^3}{6} + O((x-1)^5). \] Substituting this into our limit gives: \[ \sin(x-1) \approx (x-1). \] ### Step 3: Substitute and Simplify Now substituting \( \sin(x-1) \) into our limit expression: - Numerator: \[ -a(x-1) + (x-1) + a = (1-a)(x-1). \] - Denominator: \[ x + (x-1) - 1 = 2(x-1). \] Thus, our limit expression simplifies to: \[ \lim_{x \to 1} \frac{(1-a)(x-1)}{2(x-1)} = \frac{1-a}{2}. \] ### Step 4: Evaluating the Exponent Next, we evaluate the exponent \( \frac{1-x}{1-\sqrt{x}} \) as \( x \to 1 \): Using L'Hôpital's Rule: \[ \lim_{x \to 1} \frac{1-x}{1-\sqrt{x}} = \lim_{x \to 1} \frac{-1}{-\frac{1}{2\sqrt{x}}} = 2. \] ### Step 5: Final Limit Expression Now, we can rewrite our limit as: \[ \left( \frac{1-a}{2} \right)^{2}. \] Setting this equal to \( \frac{1}{4} \): \[ \left( \frac{1-a}{2} \right)^{2} = \frac{1}{4}. \] ### Step 6: Solve for \( a \) Taking the square root of both sides gives: \[ \frac{1-a}{2} = \pm \frac{1}{2}. \] This leads to two cases: 1. \( 1-a = 1 \) which gives \( a = 0 \). 2. \( 1-a = -1 \) which gives \( a = 2 \). ### Step 7: Conclusion The non-negative integer values of \( a \) are \( 0 \) and \( 2 \). The largest value is: \[ \boxed{2}. \]

To solve the limit problem, we need to find the largest non-negative integer \( a \) such that \[ \lim_{x \to 1} \left( \frac{-ax + \sin(x-1) + a}{x + \sin(x-1) - 1} \right)^{\frac{1-x}{1-\sqrt{x}}} = \frac{1}{4}. \] ### Step 1: Simplifying the Limit Expression ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE MAIN|8 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The largets value of non negative integer for which lim_(x->1){(-a x+sin(x-1)+a)/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=1/4

Evaluate lim_(xto1) (a^(x-1)-1)/(sinpix).

lim_(xto1)(sqrt(1-cos2(x-1)))/(x-1) ,

Number of integral values of k for which lim_(xto1) sin^(-1)((k)/(log_(e)x)-(k)/(x-1)) exists is _________.

Evaluate lim_(xto2) sin(e^(x-2)-1)/(log(x-1))

lim_(xto1) (1-x^(2))/(sin2pix) is equal to

Evaluate lim_(xto1) (x^(4)-sqrt(x))/(sqrt(x)-1) .

The vlaue of lim _(xto0) ((sin x)/(x )) ^((1)/(1- cos x )) :

lim_(xrarr0) (sin4x)/(1-sqrt(1-x))=?

Evaluate the following limits : Lim_(xto2) (sin(e^(x-2)-1))/(log(x-1))

CENGAGE ENGLISH-LIMITS-Numerical Value Type
  1. The value of lim(xtooo) ((100)/(1-x^(100))-(50)/(1-x^(50))) is .

    Text Solution

    |

  2. If L= lim(xto2) (root(3)(60+x^(2))-4)/(sin(x-2)), then the value of 1/...

    Text Solution

    |

  3. The value of lim(xtooo) ((20^(x)-1)/(19(5^(x))))^(1//x) is .

    Text Solution

    |

  4. The value of lim(ntooo) [root(3)((n+1)^(2))-root(3)((n-1)^(2))] is .

    Text Solution

    |

  5. If L= lim(ntooo) (2xx3^(2)xx2^(3)xx3^(4)...xx2^(n-1)xx3^(n))^((1)/((n^...

    Text Solution

    |

  6. The value of lim(x to oo ) (log(e)(log(e)x))/(e^(sqrt(x))) is . (a) π...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. The value of lim(x to oo ) (x-x^(2)log(e)(1+(1)/(x))) is .

    Text Solution

    |

  9. Let S(n)=1+2+3+...+n " and " P(n)=(S(2))/(S(2)-1).(S(3))/(S(3)-1).(S(4...

    Text Solution

    |

  10. If lim(xto1)(asin(x-1)+bcos(x-1)+4)/(x^(2)-1)=-2, then |a+b| is.

    Text Solution

    |

  11. Let lim(xto1) (x^(a)-ax+a-1)/((x-1)^(2))=f(a). Then the value of f(4) ...

    Text Solution

    |

  12. Number of integral values of k for which lim(xto1) sin^(-1)((k)/(log...

    Text Solution

    |

  13. If lim(xto1) (1+ax+bx^(2))^((e)/((x-1)))=e^(3), then the value of bc i...

    Text Solution

    |

  14. Let f''(x) be continuous at x=0 If lim(xto0) (2f(x)-3af(2x)+bf(8x))/...

    Text Solution

    |

  15. If L=lim(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx), then the value of 1//...

    Text Solution

    |

  16. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  17. If lim(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3), then the value of ln(lim(x...

    Text Solution

    |

  18. The largest value of the non-negative integer a for which lim(xto1) ...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. Let alpha,betainR be such that lim(xto0) (x^(2)sin(betax))/(alphax-sin...

    Text Solution

    |