Home
Class 12
MATHS
Let alpha,betainR be such that lim(xto0)...

Let `alpha,betainR` be such that `lim_(xto0) (x^(2)sin(betax))/(alphax-sinx)=1`. Then `6(alpha+beta)` equals___________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we start with the given expression: \[ \lim_{x \to 0} \frac{x^2 \sin(\beta x)}{\alpha x - \sin x} = 1 \] ### Step 1: Rewrite the limit expression We can rewrite the limit by dividing both the numerator and the denominator by \(\beta x\): \[ \lim_{x \to 0} \frac{x^2 \sin(\beta x)}{\alpha x - \sin x} = \lim_{x \to 0} \frac{x^2}{\beta x} \cdot \frac{\sin(\beta x)}{\beta x} \cdot \frac{\beta x}{\alpha x - \sin x} \] ### Step 2: Use the limit property Using the property that \(\lim_{x \to 0} \frac{\sin(\beta x)}{\beta x} = 1\), we simplify the limit: \[ = \lim_{x \to 0} \frac{x}{\beta} \cdot 1 \cdot \frac{\beta x}{\alpha x - \sin x} \] ### Step 3: Substitute the Taylor series for \(\sin x\) Using the Taylor series expansion for \(\sin x\): \[ \sin x = x - \frac{x^3}{6} + O(x^5) \] We substitute this into the denominator: \[ \alpha x - \sin x = \alpha x - \left(x - \frac{x^3}{6} + O(x^5)\right) = (\alpha - 1)x + \frac{x^3}{6} - O(x^5) \] ### Step 4: Substitute back into the limit Now we substitute this back into our limit: \[ \lim_{x \to 0} \frac{x^2 \cdot \frac{\sin(\beta x)}{\beta x}}{\alpha x - \sin x} = \lim_{x \to 0} \frac{x^2}{\beta} \cdot \frac{\beta x}{(\alpha - 1)x + \frac{x^3}{6}} = \lim_{x \to 0} \frac{x^2}{\beta} \cdot \frac{\beta x}{(\alpha - 1)x + \frac{x^3}{6}} \] ### Step 5: Simplify the limit As \(x\) approaches 0, we can ignore the higher-order terms: \[ = \lim_{x \to 0} \frac{x^2}{\beta} \cdot \frac{\beta x}{(\alpha - 1)x} = \lim_{x \to 0} \frac{x^3}{\beta(\alpha - 1)} \] ### Step 6: Set the limit equal to 1 For the limit to equal 1, we need: \[ \frac{1}{\beta(\alpha - 1)} = 1 \implies \beta(\alpha - 1) = 1 \] ### Step 7: Solve for \(\alpha\) From the equation \(\beta(\alpha - 1) = 1\): \[ \alpha - 1 = \frac{1}{\beta} \implies \alpha = 1 + \frac{1}{\beta} \] ### Step 8: Substitute \(\alpha\) back into the equation Now we can substitute \(\alpha\) back into the equation: \[ \beta \left( 1 + \frac{1}{\beta} - 1 \right) = 1 \implies \beta \cdot \frac{1}{\beta} = 1 \implies \beta = \frac{1}{6} \] ### Step 9: Find \(\alpha\) Substituting \(\beta = \frac{1}{6}\) back into the equation for \(\alpha\): \[ \alpha = 1 + 6 = 7 \] ### Step 10: Calculate \(6(\alpha + \beta)\) Now we can calculate \(6(\alpha + \beta)\): \[ 6(\alpha + \beta) = 6\left(7 + \frac{1}{6}\right) = 6\left(\frac{42 + 1}{6}\right) = 6 \cdot 7 = 42 \] Thus, the final answer is: \[ \boxed{42} \]

To solve the limit problem, we start with the given expression: \[ \lim_{x \to 0} \frac{x^2 \sin(\beta x)}{\alpha x - \sin x} = 1 \] ### Step 1: Rewrite the limit expression We can rewrite the limit by dividing both the numerator and the denominator by \(\beta x\): ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE MAIN|8 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let alpha, beta in R such that lim_(x ->0) (x^2sin(betax))/(alphax-sinx)=1 . Then 6(alpha + beta) equals

Evaluate lim_(xto0)|x|^(sinx)

Evaluate lim_(xto0) (e^(x)-e^(-x)-2x)/(x-sinx).

lim_(xto0)((a+x)^2sin(a+x)-a^2sina)/x

Evaluate lim_(xto0^(+))(sinx)^(x)

Evaluate lim_(xto0) (e^(x)-e^(xcosx))/(x+sinx).

Evaluate lim_(xto0) (2sinx-sin2x)/(x^(3))

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

Evaluate lim_(xto0) ((1)/(x^(2))-(1)/(sin^(2)x)).

If lim _(xto0) (ln cot ((pi)/(4) -beta x))/( tan ax)=1, then (alpha)/(beta)=.....

CENGAGE ENGLISH-LIMITS-Numerical Value Type
  1. The value of lim(xtooo) ((100)/(1-x^(100))-(50)/(1-x^(50))) is .

    Text Solution

    |

  2. If L= lim(xto2) (root(3)(60+x^(2))-4)/(sin(x-2)), then the value of 1/...

    Text Solution

    |

  3. The value of lim(xtooo) ((20^(x)-1)/(19(5^(x))))^(1//x) is .

    Text Solution

    |

  4. The value of lim(ntooo) [root(3)((n+1)^(2))-root(3)((n-1)^(2))] is .

    Text Solution

    |

  5. If L= lim(ntooo) (2xx3^(2)xx2^(3)xx3^(4)...xx2^(n-1)xx3^(n))^((1)/((n^...

    Text Solution

    |

  6. The value of lim(x to oo ) (log(e)(log(e)x))/(e^(sqrt(x))) is . (a) π...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. The value of lim(x to oo ) (x-x^(2)log(e)(1+(1)/(x))) is .

    Text Solution

    |

  9. Let S(n)=1+2+3+...+n " and " P(n)=(S(2))/(S(2)-1).(S(3))/(S(3)-1).(S(4...

    Text Solution

    |

  10. If lim(xto1)(asin(x-1)+bcos(x-1)+4)/(x^(2)-1)=-2, then |a+b| is.

    Text Solution

    |

  11. Let lim(xto1) (x^(a)-ax+a-1)/((x-1)^(2))=f(a). Then the value of f(4) ...

    Text Solution

    |

  12. Number of integral values of k for which lim(xto1) sin^(-1)((k)/(log...

    Text Solution

    |

  13. If lim(xto1) (1+ax+bx^(2))^((e)/((x-1)))=e^(3), then the value of bc i...

    Text Solution

    |

  14. Let f''(x) be continuous at x=0 If lim(xto0) (2f(x)-3af(2x)+bf(8x))/...

    Text Solution

    |

  15. If L=lim(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx), then the value of 1//...

    Text Solution

    |

  16. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  17. If lim(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3), then the value of ln(lim(x...

    Text Solution

    |

  18. The largest value of the non-negative integer a for which lim(xto1) ...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. Let alpha,betainR be such that lim(xto0) (x^(2)sin(betax))/(alphax-sin...

    Text Solution

    |