Home
Class 12
MATHS
Find the value of int(0)^(4)[x]dx, where...

Find the value of `int_(0)^(4)[x]dx`, where `[.]` represents the gretest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the integral \( \int_{0}^{4} [x] \, dx \), where \([x]\) represents the greatest integer function (also known as the floor function), we will break down the integral into segments where the value of \([x]\) is constant. ### Step-by-step solution: 1. **Identify the intervals**: The greatest integer function \([x]\) takes constant integer values in the intervals: - From \(0\) to \(1\), \([x] = 0\) - From \(1\) to \(2\), \([x] = 1\) - From \(2\) to \(3\), \([x] = 2\) - From \(3\) to \(4\), \([x] = 3\) 2. **Break the integral into segments**: \[ \int_{0}^{4} [x] \, dx = \int_{0}^{1} [x] \, dx + \int_{1}^{2} [x] \, dx + \int_{2}^{3} [x] \, dx + \int_{3}^{4} [x] \, dx \] 3. **Evaluate each segment**: - For \( \int_{0}^{1} [x] \, dx \): \[ \int_{0}^{1} 0 \, dx = 0 \] - For \( \int_{1}^{2} [x] \, dx \): \[ \int_{1}^{2} 1 \, dx = 1 \cdot (2 - 1) = 1 \] - For \( \int_{2}^{3} [x] \, dx \): \[ \int_{2}^{3} 2 \, dx = 2 \cdot (3 - 2) = 2 \] - For \( \int_{3}^{4} [x] \, dx \): \[ \int_{3}^{4} 3 \, dx = 3 \cdot (4 - 3) = 3 \] 4. **Sum the results**: \[ \int_{0}^{4} [x] \, dx = 0 + 1 + 2 + 3 = 6 \] ### Final answer: The value of \( \int_{0}^{4} [x] \, dx \) is \( 6 \). ---

To find the value of the integral \( \int_{0}^{4} [x] \, dx \), where \([x]\) represents the greatest integer function (also known as the floor function), we will break down the integral into segments where the value of \([x]\) is constant. ### Step-by-step solution: 1. **Identify the intervals**: The greatest integer function \([x]\) takes constant integer values in the intervals: - From \(0\) to \(1\), \([x] = 0\) - From \(1\) to \(2\), \([x] = 1\) - From \(2\) to \(3\), \([x] = 2\) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

Evaluate: int_0^(100)x-[x]dx where [dot] represents the greatest integer function).

The value of int_0^(2pi)[2 sin x] dx , where [.] represents the greatest integral functions, is

int(3x^2+2x)/(x^6+2x^5+x^4+2x^3+2x^2+5) dx=F(x) Fidn the value of [F(1)-F(0)] where [.] represents greatest integer function

Evaluate int_(-2)^(4)x[x]dx where [.] denotes the greatest integer function.

If f(x)=int(2+sqrt(x))/((x+1+sqrt(x))^2)dx and f(0)=0 then the value of If [f(4)] is: (where [.] represents the greatest integer function) .

Evaluate: int_0^(100)(x-[x]dx(w h e r e[dot] represents the greatest integer function).

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate the following integrals using limit of sum. int(a)^(b)cos x...

    Text Solution

    |

  2. Evaluate the following integrals . int(a)^(b)x^(3)dx

    Text Solution

    |

  3. Find the value of int(0)^(4)[x]dx, where [.] represents the gretest in...

    Text Solution

    |

  4. If f(x)={(1-|x| ,, |x|lt=1),(0 ,, |x|>1):} and g(x)=f(x-1)+f(x+1), th...

    Text Solution

    |

  5. Consider the integral I=int(0)^(2pi)(dx)/(5-2cosx) Making the substi...

    Text Solution

    |

  6. Evaluate the following : int(0)^(pi)(dx)/(1+sinx)

    Text Solution

    |

  7. Evaluate: int1^oo(e^(x+1)+e^(3-x))^(-1)dx

    Text Solution

    |

  8. Evaluate: int0^(1/(sqrt(2)))(sin^(-1)x)/((1-x^2)sqrt(1-x^2))dx

    Text Solution

    |

  9. Evaluate: int0^1(2-x^2)/((1+x)sqrt(1-x^2))dx

    Text Solution

    |

  10. Evaluate the following : int(0)^(pi//2)(dx)/(a^(2)cos^(2)x+b^(2)sin^(2...

    Text Solution

    |

  11. Evaluate: int(pi//6)^(pi//4)(1+cotx)/(e^(x)sinx) dx

    Text Solution

    |

  12. Evaluate int(0)^(1)(e^(-x)dx)/(1+e^(x))

    Text Solution

    |

  13. Prove that int0^(102)(x-1)(x-2)(x-100) x(1/((x-1)+1/((x-2))+1/((x-100...

    Text Solution

    |

  14. Show that : int0^1(logx)/((1+x))dx=-int0^1(log(1+x))/x dx

    Text Solution

    |

  15. If int0^1(e^t)/(1+t)dt=a , then find the value of int0^1(e^t)/((1+t)^2...

    Text Solution

    |

  16. Let f be a one to one continuous function such that f(2)=3 and f(5)=6....

    Text Solution

    |

  17. Evaluate: ("lim")(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(s...

    Text Solution

    |

  18. Lim(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 * sec^2 (4/n^2)+..............+...

    Text Solution

    |

  19. Evaluate ("lim")(nvecoo)sum(k=1)^nk/(n^2+k^2)

    Text Solution

    |

  20. Evaluate the following limit: lim(nto oo)(sum(r=1)^(n) sqrt(r)sum(r=...

    Text Solution

    |