Home
Class 12
MATHS
If f(x)={(1-|x| ,, |x|lt=1),(0 ,, |x|>1)...

If `f(x)={(1-|x| ,, |x|lt=1),(0 ,, |x|>1):}` and `g(x)=f(x-1)+f(x+1),` then find the value of `int_(-3)^5g(x)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the integral \(\int_{-3}^{5} g(x) \, dx\), where \(g(x) = f(x-1) + f(x+1)\) and \(f(x)\) is defined as follows: \[ f(x) = \begin{cases} 1 - |x| & \text{if } |x| \leq 1 \\ 0 & \text{if } |x| > 1 \end{cases} \] ### Step 1: Analyze the function \(f(x)\) The function \(f(x)\) is non-zero only in the interval \([-1, 1]\). Specifically: - \(f(x) = 1 - |x|\) for \(-1 \leq x \leq 1\) - \(f(x) = 0\) for \(x < -1\) and \(x > 1\) ### Step 2: Determine \(f(x-1)\) and \(f(x+1)\) 1. **For \(f(x-1)\)**: - \(f(x-1) = 1 - |x-1|\) for \(0 \leq x \leq 2\) (since \(|x-1| \leq 1\) implies \(0 \leq x \leq 2\)) - \(f(x-1) = 0\) for \(x < 0\) and \(x > 2\) 2. **For \(f(x+1)\)**: - \(f(x+1) = 1 - |x+1|\) for \(-2 \leq x \leq 0\) (since \(|x+1| \leq 1\) implies \(-2 \leq x \leq 0\)) - \(f(x+1) = 0\) for \(x < -2\) and \(x > 0\) ### Step 3: Combine \(f(x-1)\) and \(f(x+1)\) to find \(g(x)\) Now, we can express \(g(x)\): - For \(-2 \leq x < 0\): \[ g(x) = f(x-1) + f(x+1) = 0 + (1 - |x+1|) = 1 - (x + 1) = 0 - x \] - For \(0 \leq x \leq 2\): \[ g(x) = f(x-1) + f(x+1) = (1 - |x-1|) + 0 = 1 - (x - 1) = 2 - x \] - For \(x < -2\) and \(x > 2\): \[ g(x) = 0 \] ### Step 4: Define \(g(x)\) piecewise Thus, we can summarize \(g(x)\) as: \[ g(x) = \begin{cases} -x & \text{if } -2 \leq x < 0 \\ 2 - x & \text{if } 0 \leq x \leq 2 \\ 0 & \text{otherwise} \end{cases} \] ### Step 5: Calculate the integral \(\int_{-3}^{5} g(x) \, dx\) Since \(g(x) = 0\) for \(x < -2\) and \(x > 2\), we only need to integrate from \(-2\) to \(2\): \[ \int_{-3}^{5} g(x) \, dx = \int_{-2}^{0} (-x) \, dx + \int_{0}^{2} (2 - x) \, dx \] #### Step 5.1: Calculate \(\int_{-2}^{0} (-x) \, dx\) \[ \int_{-2}^{0} (-x) \, dx = \left[-\frac{x^2}{2}\right]_{-2}^{0} = 0 - \left[-\frac{(-2)^2}{2}\right] = 0 - \left[-\frac{4}{2}\right] = 2 \] #### Step 5.2: Calculate \(\int_{0}^{2} (2 - x) \, dx\) \[ \int_{0}^{2} (2 - x) \, dx = \left[2x - \frac{x^2}{2}\right]_{0}^{2} = \left[2(2) - \frac{(2)^2}{2}\right] - \left[0\right] = 4 - 2 = 2 \] ### Step 6: Combine the results Now, adding both areas: \[ \int_{-3}^{5} g(x) \, dx = 2 + 2 = 4 \] ### Final Answer Thus, the value of \(\int_{-3}^{5} g(x) \, dx\) is \(\boxed{4}\).

To solve the problem, we need to find the value of the integral \(\int_{-3}^{5} g(x) \, dx\), where \(g(x) = f(x-1) + f(x+1)\) and \(f(x)\) is defined as follows: \[ f(x) = \begin{cases} 1 - |x| & \text{if } |x| \leq 1 \\ 0 & \text{if } |x| > 1 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={1-|x|,|x| leq 1 and 0,|x| lt 1 and g(x)=f(x-)+f(x + 1) , for all x in R .Then,the value of int_-3^3 g(x)dx is

If f:RrarrR defined by f(x)=sinx+x , then find the value of int_0^pi(f^-1(x))dx

If f(x)=min{|x-1|,|x|,|x+1|, then the value of int_-1^1 f(x)dx is equal to

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If f(x)=|x-2|+x^(2)-1 and g(x)+f(x)=x^(2)+3 , find the maximum value of g(x) .

If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(1) is

If f(x)={{:(-1, x lt 0),(0, x=0 and g(x)=x(1-x^(2))", then"),(1, x gt 0):}

If for non zero x , 3f(x)+4f((1)/(x))=(1)/(x)-10 , then the value of int_(2)^(3)f(x)dx is

Let f(x) be a function satisying f(x) = f((100)/(x)) AA x ge 0 . If int_(1)^(10) (f(x))/(x) dx = 5 then find the value of int_(1)^(100)(f(x))/(x) dx .

If the function f(x)=x^3+e^(x/2) and g(x)=f ^(−1)(x) , then the value of g ′ (1) is

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate the following integrals . int(a)^(b)x^(3)dx

    Text Solution

    |

  2. Find the value of int(0)^(4)[x]dx, where [.] represents the gretest in...

    Text Solution

    |

  3. If f(x)={(1-|x| ,, |x|lt=1),(0 ,, |x|>1):} and g(x)=f(x-1)+f(x+1), th...

    Text Solution

    |

  4. Consider the integral I=int(0)^(2pi)(dx)/(5-2cosx) Making the substi...

    Text Solution

    |

  5. Evaluate the following : int(0)^(pi)(dx)/(1+sinx)

    Text Solution

    |

  6. Evaluate: int1^oo(e^(x+1)+e^(3-x))^(-1)dx

    Text Solution

    |

  7. Evaluate: int0^(1/(sqrt(2)))(sin^(-1)x)/((1-x^2)sqrt(1-x^2))dx

    Text Solution

    |

  8. Evaluate: int0^1(2-x^2)/((1+x)sqrt(1-x^2))dx

    Text Solution

    |

  9. Evaluate the following : int(0)^(pi//2)(dx)/(a^(2)cos^(2)x+b^(2)sin^(2...

    Text Solution

    |

  10. Evaluate: int(pi//6)^(pi//4)(1+cotx)/(e^(x)sinx) dx

    Text Solution

    |

  11. Evaluate int(0)^(1)(e^(-x)dx)/(1+e^(x))

    Text Solution

    |

  12. Prove that int0^(102)(x-1)(x-2)(x-100) x(1/((x-1)+1/((x-2))+1/((x-100...

    Text Solution

    |

  13. Show that : int0^1(logx)/((1+x))dx=-int0^1(log(1+x))/x dx

    Text Solution

    |

  14. If int0^1(e^t)/(1+t)dt=a , then find the value of int0^1(e^t)/((1+t)^2...

    Text Solution

    |

  15. Let f be a one to one continuous function such that f(2)=3 and f(5)=6....

    Text Solution

    |

  16. Evaluate: ("lim")(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(s...

    Text Solution

    |

  17. Lim(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 * sec^2 (4/n^2)+..............+...

    Text Solution

    |

  18. Evaluate ("lim")(nvecoo)sum(k=1)^nk/(n^2+k^2)

    Text Solution

    |

  19. Evaluate the following limit: lim(nto oo)(sum(r=1)^(n) sqrt(r)sum(r=...

    Text Solution

    |

  20. Evaluate the following limit: lim(nto oo)[(n!)/(n^(n))]^(1//n)

    Text Solution

    |