Home
Class 12
MATHS
Consider the integral I=int(0)^(2pi)(dx)...

Consider the integral `I=int_(0)^(2pi)(dx)/(5-2cosx)`
Making the substitution `"tan"1/2x=t`, we have
`I=int_(0)^(2pi)(dx)/(5-2cosx)=int_(0)^(0)(2dt)/((1+t^(2))[5-2(1-t^(2))//(1+t^(2))])=0`
The result is obviously wrong, since the integrand is positive and consequently the integral of this function cannot be equal to zero. Find the mistake.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2\pi} \frac{dx}{5 - 2\cos x} \) and identify the mistake in the substitution \( \tan \frac{x}{2} = t \), we will proceed step by step. ### Step 1: Write down the integral We start with the integral: \[ I = \int_{0}^{2\pi} \frac{dx}{5 - 2\cos x} \] ### Step 2: Make the substitution Using the substitution \( t = \tan \frac{x}{2} \), we know the following relationships: - \( \cos x = \frac{1 - t^2}{1 + t^2} \) - \( dx = \frac{2}{1 + t^2} dt \) ### Step 3: Change the limits of integration When \( x = 0 \), \( t = \tan(0) = 0 \). When \( x = 2\pi \), \( t = \tan(\pi) = 0 \). Thus, the limits of integration change from \( 0 \) to \( 0 \). ### Step 4: Substitute in the integral Substituting these into the integral gives: \[ I = \int_{0}^{0} \frac{2}{1 + t^2} \cdot \frac{1}{5 - 2\left(\frac{1 - t^2}{1 + t^2}\right)} dt \] ### Step 5: Simplify the integrand Now, simplify the integrand: \[ 5 - 2\cos x = 5 - 2\left(\frac{1 - t^2}{1 + t^2}\right) = 5 - \frac{2(1 - t^2)}{1 + t^2} = \frac{5(1 + t^2) - 2(1 - t^2)}{1 + t^2} = \frac{5 + 5t^2 - 2 + 2t^2}{1 + t^2} = \frac{3 + 7t^2}{1 + t^2} \] Thus, the integral becomes: \[ I = \int_{0}^{0} \frac{2}{1 + t^2} \cdot \frac{1 + t^2}{3 + 7t^2} dt = \int_{0}^{0} \frac{2}{3 + 7t^2} dt \] ### Step 6: Evaluate the integral Since the limits of integration are the same (from \( 0 \) to \( 0 \)), we find that: \[ I = 0 \] ### Step 7: Identify the mistake The mistake here lies in the substitution \( t = \tan \frac{x}{2} \) because this substitution is discontinuous at \( x = \pi \), which is within the interval of integration \( [0, 2\pi] \). This discontinuity causes the integral to evaluate incorrectly to zero when it should yield a positive value. ### Conclusion The integral \( I = \int_{0}^{2\pi} \frac{dx}{5 - 2\cos x} \) should be evaluated using a different method or by correctly handling the discontinuity in the substitution.

To solve the integral \( I = \int_{0}^{2\pi} \frac{dx}{5 - 2\cos x} \) and identify the mistake in the substitution \( \tan \frac{x}{2} = t \), we will proceed step by step. ### Step 1: Write down the integral We start with the integral: \[ I = \int_{0}^{2\pi} \frac{dx}{5 - 2\cos x} \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Consider the integral int_0^(2pi)(dx)/(5-2cosx) making the substitution tan(x/2)=t , we have I=int_0^(2pi)(dx)/(5-2cosx) =int_0^0(2dt)/((1+t^2)[5-2(1-t^2)/(1+t^2)])=0 The result is obviously wrong, since the integrand is positive and consequently the integral of this function cannot be equal to zero. Find the mistake.

Evaluate the integral I=int_(0)^(2)|x-1|dx .

The value of I=int_(0)^(pi//2) (1)/(1+cosx)dx is

If x=int_(0)^(oo)(dt)/((1+t^(2))(1+t^(2017))) , then (3x)/(pi) is equal to

The value of the integral int_(0)^(pi) (1)/(e^(cosx)+1)dx , is

Evaluate int_(0)^(2pi)|cosx|dx

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

int_(0)^(pi)|1+2cosx| dx is equal to :

Evaluate: int_0^(pi//2)1/(3+2cosx)dx

Show that int_(0)^(2)(2x+1)dx = int_(0)^(5)(2x+1)+int_(5)^(2)(2x+1)

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Find the value of int(0)^(4)[x]dx, where [.] represents the gretest in...

    Text Solution

    |

  2. If f(x)={(1-|x| ,, |x|lt=1),(0 ,, |x|>1):} and g(x)=f(x-1)+f(x+1), th...

    Text Solution

    |

  3. Consider the integral I=int(0)^(2pi)(dx)/(5-2cosx) Making the substi...

    Text Solution

    |

  4. Evaluate the following : int(0)^(pi)(dx)/(1+sinx)

    Text Solution

    |

  5. Evaluate: int1^oo(e^(x+1)+e^(3-x))^(-1)dx

    Text Solution

    |

  6. Evaluate: int0^(1/(sqrt(2)))(sin^(-1)x)/((1-x^2)sqrt(1-x^2))dx

    Text Solution

    |

  7. Evaluate: int0^1(2-x^2)/((1+x)sqrt(1-x^2))dx

    Text Solution

    |

  8. Evaluate the following : int(0)^(pi//2)(dx)/(a^(2)cos^(2)x+b^(2)sin^(2...

    Text Solution

    |

  9. Evaluate: int(pi//6)^(pi//4)(1+cotx)/(e^(x)sinx) dx

    Text Solution

    |

  10. Evaluate int(0)^(1)(e^(-x)dx)/(1+e^(x))

    Text Solution

    |

  11. Prove that int0^(102)(x-1)(x-2)(x-100) x(1/((x-1)+1/((x-2))+1/((x-100...

    Text Solution

    |

  12. Show that : int0^1(logx)/((1+x))dx=-int0^1(log(1+x))/x dx

    Text Solution

    |

  13. If int0^1(e^t)/(1+t)dt=a , then find the value of int0^1(e^t)/((1+t)^2...

    Text Solution

    |

  14. Let f be a one to one continuous function such that f(2)=3 and f(5)=6....

    Text Solution

    |

  15. Evaluate: ("lim")(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(s...

    Text Solution

    |

  16. Lim(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 * sec^2 (4/n^2)+..............+...

    Text Solution

    |

  17. Evaluate ("lim")(nvecoo)sum(k=1)^nk/(n^2+k^2)

    Text Solution

    |

  18. Evaluate the following limit: lim(nto oo)(sum(r=1)^(n) sqrt(r)sum(r=...

    Text Solution

    |

  19. Evaluate the following limit: lim(nto oo)[(n!)/(n^(n))]^(1//n)

    Text Solution

    |

  20. P rov et h a t4lt=int1^3sqrt(3+x^2)lt=4sqrt(3)

    Text Solution

    |