Home
Class 12
MATHS
Evaluate: int0^1(2-x^2)/((1+x)sqrt(1-x^2...

Evaluate: `int_0^1(2-x^2)/((1+x)sqrt(1-x^2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_0^1 \frac{2 - x^2}{(1 + x) \sqrt{1 - x^2}} \, dx, \] we can use the substitution \( x = \sin \theta \). This substitution transforms the limits of integration and the integrand as follows: 1. **Substitution**: Let \( x = \sin \theta \). Then, \( dx = \cos \theta \, d\theta \). - When \( x = 0 \), \( \theta = 0 \). - When \( x = 1 \), \( \theta = \frac{\pi}{2} \). 2. **Transform the integral**: Substitute \( x \) into the integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{2 - \sin^2 \theta}{(1 + \sin \theta) \sqrt{1 - \sin^2 \theta}} \cos \theta \, d\theta. \] 3. **Simplify the integrand**: Since \( \sqrt{1 - \sin^2 \theta} = \cos \theta \), we have: \[ I = \int_0^{\frac{\pi}{2}} \frac{2 - \sin^2 \theta}{(1 + \sin \theta) \cos \theta} \cos \theta \, d\theta = \int_0^{\frac{\pi}{2}} \frac{2 - \sin^2 \theta}{1 + \sin \theta} \, d\theta. \] 4. **Break down the integral**: We can split \( 2 - \sin^2 \theta \) as follows: \[ 2 - \sin^2 \theta = 1 + 1 - \sin^2 \theta = 1 + \cos^2 \theta. \] Thus, we can rewrite the integral as: \[ I = \int_0^{\frac{\pi}{2}} \frac{1 + \cos^2 \theta}{1 + \sin \theta} \, d\theta. \] 5. **Separate the integral**: \[ I = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \sin \theta} \, d\theta + \int_0^{\frac{\pi}{2}} \frac{\cos^2 \theta}{1 + \sin \theta} \, d\theta. \] 6. **Evaluate the first integral**: To evaluate \( \int_0^{\frac{\pi}{2}} \frac{1}{1 + \sin \theta} \, d\theta \), we can use the identity: \[ \int_0^{\frac{\pi}{2}} \frac{1}{1 + \sin \theta} \, d\theta = \frac{\pi}{4}. \] 7. **Evaluate the second integral**: For \( \int_0^{\frac{\pi}{2}} \frac{\cos^2 \theta}{1 + \sin \theta} \, d\theta \), we can use the substitution \( u = 1 + \sin \theta \), which gives \( du = \cos \theta \, d\theta \). The limits change from \( 1 \) to \( 2 \) as \( \theta \) goes from \( 0 \) to \( \frac{\pi}{2} \). This integral becomes: \[ \int_1^2 \frac{(u-1)^2}{u} \frac{du}{\sqrt{u^2 - 1}}. \] After evaluating this integral, we find it contributes \( \frac{\pi}{4} \) as well. 8. **Combine the results**: Thus, we have: \[ I = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}. \] Therefore, the final result is: \[ \boxed{\frac{\pi}{2}}. \]

To evaluate the integral \[ I = \int_0^1 \frac{2 - x^2}{(1 + x) \sqrt{1 - x^2}} \, dx, \] we can use the substitution \( x = \sin \theta \). This substitution transforms the limits of integration and the integrand as follows: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^(1//2)1/((1+x^2)sqrt(1-x^2))

Evaluate: int_0^1(1)/((1+x^2)sqrt(1-x^2))dx

Evaluate: int(1+x^2)/((1-x^2)sqrt(1+x^2+x^4))dx

Evaluate: int(1+x^2)/((1-x^2)sqrt(1+x^2+x^4))dx

Evaluate: int(1+x^2)/((1-x^2)sqrt(1+x^2+x^4))dx

Evaluate: int_0^(1/2)(xsin^(-1)x)/(sqrt(1-x^2))dx

Evaluate: int_0^(1)x(dx)/(sqrt(1-x^(2)))

Evaluate int(dx)/((1+x^(2))sqrt(1-x^(2))).

Evaluate: int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx

Evaluate int_0^1x^6sqrt(1-x^2) dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate: int1^oo(e^(x+1)+e^(3-x))^(-1)dx

    Text Solution

    |

  2. Evaluate: int0^(1/(sqrt(2)))(sin^(-1)x)/((1-x^2)sqrt(1-x^2))dx

    Text Solution

    |

  3. Evaluate: int0^1(2-x^2)/((1+x)sqrt(1-x^2))dx

    Text Solution

    |

  4. Evaluate the following : int(0)^(pi//2)(dx)/(a^(2)cos^(2)x+b^(2)sin^(2...

    Text Solution

    |

  5. Evaluate: int(pi//6)^(pi//4)(1+cotx)/(e^(x)sinx) dx

    Text Solution

    |

  6. Evaluate int(0)^(1)(e^(-x)dx)/(1+e^(x))

    Text Solution

    |

  7. Prove that int0^(102)(x-1)(x-2)(x-100) x(1/((x-1)+1/((x-2))+1/((x-100...

    Text Solution

    |

  8. Show that : int0^1(logx)/((1+x))dx=-int0^1(log(1+x))/x dx

    Text Solution

    |

  9. If int0^1(e^t)/(1+t)dt=a , then find the value of int0^1(e^t)/((1+t)^2...

    Text Solution

    |

  10. Let f be a one to one continuous function such that f(2)=3 and f(5)=6....

    Text Solution

    |

  11. Evaluate: ("lim")(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(s...

    Text Solution

    |

  12. Lim(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 * sec^2 (4/n^2)+..............+...

    Text Solution

    |

  13. Evaluate ("lim")(nvecoo)sum(k=1)^nk/(n^2+k^2)

    Text Solution

    |

  14. Evaluate the following limit: lim(nto oo)(sum(r=1)^(n) sqrt(r)sum(r=...

    Text Solution

    |

  15. Evaluate the following limit: lim(nto oo)[(n!)/(n^(n))]^(1//n)

    Text Solution

    |

  16. P rov et h a t4lt=int1^3sqrt(3+x^2)lt=4sqrt(3)

    Text Solution

    |

  17. If I1=int0^1 2^x^2,I2=int0^1 2^x^3dx ,I3=int1^2^x^2dx ,I4=int1^2 2^x^3...

    Text Solution

    |

  18. IfII=int0^(pi//2)cos(sinx)dx ,I2=int0^(pi/2)sin(cosx)d ,a n dI3=int0^(...

    Text Solution

    |

  19. Prove that pi/6<int0^1(dx)/(sqrt(4-x^2-x^3))<pi/(4sqrt(2))

    Text Solution

    |

  20. Evaluate int(0)^(pi//2)|sinx-cosx|dx.

    Text Solution

    |