Home
Class 12
MATHS
Evaluate int(0)^(1)(e^(-x)dx)/(1+e^(x))...

Evaluate `int_(0)^(1)(e^(-x)dx)/(1+e^(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{1} \frac{e^{-x}}{1 + e^{x}} \, dx, \] we will follow a systematic approach. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_{0}^{1} \frac{e^{-x}}{1 + e^{x}} \, dx. \] Notice that we can rewrite \( e^{-x} \) as \( \frac{1}{e^{x}} \): \[ I = \int_{0}^{1} \frac{1}{e^{x}(1 + e^{x})} \, dx. \] ### Step 2: Substitution Next, we perform the substitution \( z = e^{x} \). Then, we have: \[ dz = e^{x} \, dx \quad \Rightarrow \quad dx = \frac{dz}{z}. \] Now we need to change the limits of integration. When \( x = 0 \), \( z = e^{0} = 1 \), and when \( x = 1 \), \( z = e^{1} = e \). Thus, the limits change from \( x: 0 \to 1 \) to \( z: 1 \to e \). Substituting these into the integral gives: \[ I = \int_{1}^{e} \frac{1}{z(1 + z)} \cdot \frac{dz}{z} = \int_{1}^{e} \frac{1}{z^2(1 + z)} \, dz. \] ### Step 3: Simplifying the Integrand Now we simplify the integrand: \[ \frac{1}{z^2(1 + z)} = \frac{1}{z^2} - \frac{1}{1 + z}. \] Thus, we can split the integral: \[ I = \int_{1}^{e} \left( \frac{1}{z^2} - \frac{1}{1 + z} \right) \, dz. \] ### Step 4: Evaluate Each Integral Now we evaluate the two integrals separately: 1. For \( \int \frac{1}{z^2} \, dz \): \[ \int \frac{1}{z^2} \, dz = -\frac{1}{z}. \] 2. For \( \int \frac{1}{1 + z} \, dz \): \[ \int \frac{1}{1 + z} \, dz = \ln(1 + z). \] ### Step 5: Combine the Results Putting it all together, we have: \[ I = \left[-\frac{1}{z} - \ln(1 + z)\right]_{1}^{e}. \] Now we evaluate at the limits: At \( z = e \): \[ -\frac{1}{e} - \ln(1 + e), \] At \( z = 1 \): \[ -\frac{1}{1} - \ln(1 + 1) = -1 - \ln(2). \] Thus, we have: \[ I = \left(-\frac{1}{e} - \ln(1 + e)\right) - \left(-1 - \ln(2)\right). \] ### Step 6: Final Calculation This simplifies to: \[ I = -\frac{1}{e} - \ln(1 + e) + 1 + \ln(2). \] ### Final Answer Thus, the final result of the integral is: \[ I = 1 - \frac{1}{e} - \ln(1 + e) + \ln(2). \]

To evaluate the integral \[ I = \int_{0}^{1} \frac{e^{-x}}{1 + e^{x}} \, dx, \] we will follow a systematic approach. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(-1)^(1)e^(x)dx

Evaluate int_(0)^(4)(e^(x))/(1+e^(2x))dx

int_(0)^(1) x e^(x) dx=1

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

Evaluate: int(e^x+1)/(e^x+x)dx

Evaluate : int(1)/(e^(x)-1)dx

Evaluate : int _(-1) ^(1) e^(x) dx .

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int_(0)^(1) (dx)/(e^(x)+e^(-x))

Evaluate: int(e^(2x))/(1+e^x)dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate the following : int(0)^(pi//2)(dx)/(a^(2)cos^(2)x+b^(2)sin^(2...

    Text Solution

    |

  2. Evaluate: int(pi//6)^(pi//4)(1+cotx)/(e^(x)sinx) dx

    Text Solution

    |

  3. Evaluate int(0)^(1)(e^(-x)dx)/(1+e^(x))

    Text Solution

    |

  4. Prove that int0^(102)(x-1)(x-2)(x-100) x(1/((x-1)+1/((x-2))+1/((x-100...

    Text Solution

    |

  5. Show that : int0^1(logx)/((1+x))dx=-int0^1(log(1+x))/x dx

    Text Solution

    |

  6. If int0^1(e^t)/(1+t)dt=a , then find the value of int0^1(e^t)/((1+t)^2...

    Text Solution

    |

  7. Let f be a one to one continuous function such that f(2)=3 and f(5)=6....

    Text Solution

    |

  8. Evaluate: ("lim")(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(s...

    Text Solution

    |

  9. Lim(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 * sec^2 (4/n^2)+..............+...

    Text Solution

    |

  10. Evaluate ("lim")(nvecoo)sum(k=1)^nk/(n^2+k^2)

    Text Solution

    |

  11. Evaluate the following limit: lim(nto oo)(sum(r=1)^(n) sqrt(r)sum(r=...

    Text Solution

    |

  12. Evaluate the following limit: lim(nto oo)[(n!)/(n^(n))]^(1//n)

    Text Solution

    |

  13. P rov et h a t4lt=int1^3sqrt(3+x^2)lt=4sqrt(3)

    Text Solution

    |

  14. If I1=int0^1 2^x^2,I2=int0^1 2^x^3dx ,I3=int1^2^x^2dx ,I4=int1^2 2^x^3...

    Text Solution

    |

  15. IfII=int0^(pi//2)cos(sinx)dx ,I2=int0^(pi/2)sin(cosx)d ,a n dI3=int0^(...

    Text Solution

    |

  16. Prove that pi/6<int0^1(dx)/(sqrt(4-x^2-x^3))<pi/(4sqrt(2))

    Text Solution

    |

  17. Evaluate int(0)^(pi//2)|sinx-cosx|dx.

    Text Solution

    |

  18. Evaluate: int(-1)^4f(x)dx=4a n dint2^4(3-f(x))dx=7, then find the val...

    Text Solution

    |

  19. Evaluate int(1)^(5)sqrt(x-2)sqrt(x-1)dx.

    Text Solution

    |

  20. Evaluate: int(-1)^3(tan^(-1)(x/(x^2+1))+tan^(-1)((x^2+1)/x))dx

    Text Solution

    |