Home
Class 12
MATHS
Show that : int0^1(logx)/((1+x))dx=-int0...

Show that : `int_0^1(logx)/((1+x))dx=-int_0^1(log(1+x))/x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To show that \[ \int_0^1 \frac{\log x}{1+x} \, dx = -\int_0^1 \frac{\log(1+x)}{x} \, dx, \] we will use integration by parts. Let's proceed step by step. ### Step 1: Define the integral Let \[ I = \int_0^1 \frac{\log x}{1+x} \, dx. \] ### Step 2: Apply integration by parts We will use integration by parts, which states: \[ \int u \, dv = uv - \int v \, du. \] Here, we can choose: - \( u = \log x \) (thus \( du = \frac{1}{x} \, dx \)) - \( dv = \frac{1}{1+x} \, dx \) (thus \( v = \log(1+x) \)) ### Step 3: Compute \( uv \) and the integral Now we compute \( uv \): \[ uv = \log x \cdot \log(1+x) \Big|_0^1. \] Evaluating this at the limits: - At \( x = 1 \): \( \log(1) \cdot \log(2) = 0 \cdot \log(2) = 0 \). - At \( x = 0 \): \( \log(0) \cdot \log(1) \) approaches \( -\infty \cdot 0 \), which is an indeterminate form. However, we can analyze the limit more carefully. Using L'Hôpital's Rule or recognizing that \( \log x \to -\infty \) and \( \log(1+x) \to 0 \) as \( x \to 0 \), we find that this term approaches \( 0 \). Thus, \[ uv \Big|_0^1 = 0 - 0 = 0. \] ### Step 4: Compute the remaining integral Now we need to compute the remaining integral: \[ -\int_0^1 \log(1+x) \cdot \frac{1}{x} \, dx. \] So we have: \[ I = 0 - \int_0^1 \frac{\log(1+x)}{x} \, dx = -\int_0^1 \frac{\log(1+x)}{x} \, dx. \] ### Conclusion Thus, we have shown that: \[ \int_0^1 \frac{\log x}{1+x} \, dx = -\int_0^1 \frac{\log(1+x)}{x} \, dx. \]

To show that \[ \int_0^1 \frac{\log x}{1+x} \, dx = -\int_0^1 \frac{\log(1+x)}{x} \, dx, \] we will use integration by parts. Let's proceed step by step. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_0^1 (x/(x+1))dx

int_(0)^(1)x log (1+2 x)dx

int_0^1 x(1-x)^(5/2) dx

int_0^1(e^x dx)/(1+e^x)

int_0^1 sqrt((1-x)/(1+x)) dx

Prove that int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dx . Hence or otherwise, evaluate the integral int_0^1tan^(-1)(1-x+x^2)dx

Prove that int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dxdot Hence or otherwise, evaluate the integral int_0^1tan^(-1)(1-x+x^2)dx

int_0^(1)(sin^(- 1)x)/x dx=

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate int(0)^(1)(e^(-x)dx)/(1+e^(x))

    Text Solution

    |

  2. Prove that int0^(102)(x-1)(x-2)(x-100) x(1/((x-1)+1/((x-2))+1/((x-100...

    Text Solution

    |

  3. Show that : int0^1(logx)/((1+x))dx=-int0^1(log(1+x))/x dx

    Text Solution

    |

  4. If int0^1(e^t)/(1+t)dt=a , then find the value of int0^1(e^t)/((1+t)^2...

    Text Solution

    |

  5. Let f be a one to one continuous function such that f(2)=3 and f(5)=6....

    Text Solution

    |

  6. Evaluate: ("lim")(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(s...

    Text Solution

    |

  7. Lim(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 * sec^2 (4/n^2)+..............+...

    Text Solution

    |

  8. Evaluate ("lim")(nvecoo)sum(k=1)^nk/(n^2+k^2)

    Text Solution

    |

  9. Evaluate the following limit: lim(nto oo)(sum(r=1)^(n) sqrt(r)sum(r=...

    Text Solution

    |

  10. Evaluate the following limit: lim(nto oo)[(n!)/(n^(n))]^(1//n)

    Text Solution

    |

  11. P rov et h a t4lt=int1^3sqrt(3+x^2)lt=4sqrt(3)

    Text Solution

    |

  12. If I1=int0^1 2^x^2,I2=int0^1 2^x^3dx ,I3=int1^2^x^2dx ,I4=int1^2 2^x^3...

    Text Solution

    |

  13. IfII=int0^(pi//2)cos(sinx)dx ,I2=int0^(pi/2)sin(cosx)d ,a n dI3=int0^(...

    Text Solution

    |

  14. Prove that pi/6<int0^1(dx)/(sqrt(4-x^2-x^3))<pi/(4sqrt(2))

    Text Solution

    |

  15. Evaluate int(0)^(pi//2)|sinx-cosx|dx.

    Text Solution

    |

  16. Evaluate: int(-1)^4f(x)dx=4a n dint2^4(3-f(x))dx=7, then find the val...

    Text Solution

    |

  17. Evaluate int(1)^(5)sqrt(x-2)sqrt(x-1)dx.

    Text Solution

    |

  18. Evaluate: int(-1)^3(tan^(-1)(x/(x^2+1))+tan^(-1)((x^2+1)/x))dx

    Text Solution

    |

  19. Evaluate int(1)^(a)x.a^(-[log(e)x])dx,(agt1).Here [.] represents the g...

    Text Solution

    |

  20. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |