Home
Class 12
MATHS
Let f be a one to one continuous functio...

Let `f` be a one to one continuous function such that `f(2)=3` and `f(5)=6`. Given `int_(2)^(5)f(x)dx=17`, then find the value of `int_(3)^(7)f^(-1)(x)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the integral \( \int_{3}^{7} f^{-1}(x) \, dx \) given the properties of the function \( f \) and the integral \( \int_{2}^{5} f(x) \, dx = 17 \). ### Step-by-Step Solution: 1. **Understand the relationship between \( f \) and \( f^{-1} \)**: We know that if \( y = f(x) \), then \( x = f^{-1}(y) \). This means we can change the variable of integration when dealing with the inverse function. 2. **Change of Variables**: We can express the integral of \( f^{-1}(x) \) in terms of \( f(x) \): \[ \int_{3}^{7} f^{-1}(x) \, dx = \int_{f^{-1}(3)}^{f^{-1}(7)} y \, f'(f^{-1}(y)) \, dy \] Here, \( f^{-1}(3) = 2 \) and \( f^{-1}(7) = 5 \) based on the given values \( f(2) = 3 \) and \( f(5) = 6 \). 3. **Set up the Integral**: Thus, we can rewrite the integral: \[ \int_{3}^{7} f^{-1}(x) \, dx = \int_{2}^{5} f^{-1}(f(x)) f'(x) \, dx \] This simplifies to: \[ \int_{2}^{5} x \, f'(x) \, dx \] 4. **Integration by Parts**: We apply integration by parts where: - Let \( u = x \) and \( dv = f'(x) \, dx \) - Then \( du = dx \) and \( v = f(x) \) The integration by parts formula is: \[ \int u \, dv = uv - \int v \, du \] Applying this, we get: \[ \int_{2}^{5} x \, f'(x) \, dx = \left[ x f(x) \right]_{2}^{5} - \int_{2}^{5} f(x) \, dx \] 5. **Evaluate the Boundary Terms**: Now we evaluate the boundary terms: \[ \left[ x f(x) \right]_{2}^{5} = 5 f(5) - 2 f(2) = 5 \cdot 6 - 2 \cdot 3 = 30 - 6 = 24 \] 6. **Substitute the Known Integral**: We know from the problem statement that \( \int_{2}^{5} f(x) \, dx = 17 \). Therefore: \[ \int_{2}^{5} x f'(x) \, dx = 24 - 17 = 7 \] 7. **Final Result**: Thus, the value of the integral \( \int_{3}^{7} f^{-1}(x) \, dx \) is: \[ \boxed{7} \]

To solve the problem, we need to find the value of the integral \( \int_{3}^{7} f^{-1}(x) \, dx \) given the properties of the function \( f \) and the integral \( \int_{2}^{5} f(x) \, dx = 17 \). ### Step-by-Step Solution: 1. **Understand the relationship between \( f \) and \( f^{-1} \)**: We know that if \( y = f(x) \), then \( x = f^{-1}(y) \). This means we can change the variable of integration when dealing with the inverse function. 2. **Change of Variables**: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f be a one-to-one continuous function such that f(2)=3 and f(5)=7 . Given int_2^5 f(x)dx=17, then find the value of int_3^7 f^(-1)(x) dx .

A continuous real function f satisfies f(2x)=3f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)) AA x in R . If int_0^1 f(x)dx=1, then find the value of int_1^2f(x)dx .

Evaluate: int_(-1)^4f(x)dx=4a n dint_2^4(3-f(x))dx=7, then find the value of int_2^(-1)f(x)dxdot

If f(0)=1,f(2)=3,f^'(2)=5 ,then find the value of int_0^1xf^('')(2x)dx

Evaluate: int_(-1)^4f(x)dx=4a n dint_2^4(3-f(x))dx=7, then find the value of int_-1^(2)f(x)dxdot

Let f:R in R be a continuous function such that f(1)=2. If lim_(x to 1) int_(2)^(f(x)) (2t)/(x-1)dt=4 , then the value of f'(1) is

If f(0)=1,f(2)=3,f'(2)=5 ,then find the value of I_(1)=int_(0)^(1)xf''(2x)dx

Let f: R → R be a one-one onto differentiable function, such that f(2)=1 and f^(prime)(2)=3. Then, find the value of (d/(dx)(f^(-1)(x)))_(x=1)

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Show that : int0^1(logx)/((1+x))dx=-int0^1(log(1+x))/x dx

    Text Solution

    |

  2. If int0^1(e^t)/(1+t)dt=a , then find the value of int0^1(e^t)/((1+t)^2...

    Text Solution

    |

  3. Let f be a one to one continuous function such that f(2)=3 and f(5)=6....

    Text Solution

    |

  4. Evaluate: ("lim")(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(s...

    Text Solution

    |

  5. Lim(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 * sec^2 (4/n^2)+..............+...

    Text Solution

    |

  6. Evaluate ("lim")(nvecoo)sum(k=1)^nk/(n^2+k^2)

    Text Solution

    |

  7. Evaluate the following limit: lim(nto oo)(sum(r=1)^(n) sqrt(r)sum(r=...

    Text Solution

    |

  8. Evaluate the following limit: lim(nto oo)[(n!)/(n^(n))]^(1//n)

    Text Solution

    |

  9. P rov et h a t4lt=int1^3sqrt(3+x^2)lt=4sqrt(3)

    Text Solution

    |

  10. If I1=int0^1 2^x^2,I2=int0^1 2^x^3dx ,I3=int1^2^x^2dx ,I4=int1^2 2^x^3...

    Text Solution

    |

  11. IfII=int0^(pi//2)cos(sinx)dx ,I2=int0^(pi/2)sin(cosx)d ,a n dI3=int0^(...

    Text Solution

    |

  12. Prove that pi/6<int0^1(dx)/(sqrt(4-x^2-x^3))<pi/(4sqrt(2))

    Text Solution

    |

  13. Evaluate int(0)^(pi//2)|sinx-cosx|dx.

    Text Solution

    |

  14. Evaluate: int(-1)^4f(x)dx=4a n dint2^4(3-f(x))dx=7, then find the val...

    Text Solution

    |

  15. Evaluate int(1)^(5)sqrt(x-2)sqrt(x-1)dx.

    Text Solution

    |

  16. Evaluate: int(-1)^3(tan^(-1)(x/(x^2+1))+tan^(-1)((x^2+1)/x))dx

    Text Solution

    |

  17. Evaluate int(1)^(a)x.a^(-[log(e)x])dx,(agt1).Here [.] represents the g...

    Text Solution

    |

  18. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  19. Find the value of int(-1)^1[x^2+{x}]dx ,w h e r e[dot]a n d{dot} denot...

    Text Solution

    |

  20. Evaluate:- int0^(pi)[cot x]dx ,w h e r e[dot] denotes the greatest in...

    Text Solution

    |