Home
Class 12
MATHS
Lim(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 *...

`Lim_(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 * sec^2 (4/n^2)+..............+1/n * sec^2 1]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we will break it down step by step. ### Step 1: Rewrite the Limit Expression We start with the limit expression: \[ \lim_{n \to \infty} \left[ \frac{1}{n^2} \sec^2\left(\frac{1}{n^2}\right) + \frac{2}{n^2} \sec^2\left(\frac{4}{n^2}\right) + \ldots + \frac{1}{n} \sec^2(1) \right] \] This can be rewritten as: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{r}{n^2} \sec^2\left(\frac{r^2}{n^2}\right) \] ### Step 2: Recognize the Riemann Sum As \( n \to \infty \), the expression resembles a Riemann sum for the integral: \[ \int_0^1 x \sec^2(x^2) \, dx \] ### Step 3: Change of Variables To evaluate the integral, we will perform a substitution. Let: \[ t = x^2 \implies dt = 2x \, dx \implies dx = \frac{dt}{2\sqrt{t}} \] The limits change as follows: - When \( x = 0 \), \( t = 0 \) - When \( x = 1 \), \( t = 1 \) ### Step 4: Substitute in the Integral Substituting into the integral: \[ \int_0^1 x \sec^2(x^2) \, dx = \int_0^1 \frac{1}{2} \sec^2(t) \, dt \] ### Step 5: Evaluate the Integral The integral of \( \sec^2(t) \) is: \[ \int \sec^2(t) \, dt = \tan(t) \] Thus: \[ \int_0^1 \sec^2(t) \, dt = \tan(1) - \tan(0) = \tan(1) - 0 = \tan(1) \] Therefore: \[ \int_0^1 x \sec^2(x^2) \, dx = \frac{1}{2} \tan(1) \] ### Step 6: Final Result Putting it all together, we find: \[ \lim_{n \to \infty} \left[ \frac{1}{n^2} \sec^2\left(\frac{1}{n^2}\right) + \frac{2}{n^2} \sec^2\left(\frac{4}{n^2}\right) + \ldots + \frac{1}{n} \sec^2(1) \right] = \frac{1}{2} \tan(1) \] ### Final Answer \[ \frac{1}{2} \tan(1) \]

To solve the limit problem given, we will break it down step by step. ### Step 1: Rewrite the Limit Expression We start with the limit expression: \[ \lim_{n \to \infty} \left[ \frac{1}{n^2} \sec^2\left(\frac{1}{n^2}\right) + \frac{2}{n^2} \sec^2\left(\frac{4}{n^2}\right) + \ldots + \frac{1}{n} \sec^2(1) \right] \] This can be rewritten as: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/nsec^2 1]

lim_(n->oo)[(1+1/n^2)(1+2^2 /n^2)(1+3^2 /n^2)......(1+n^2 / n^2)]^(1/n)

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

7. lim_(n->oo) (2^(1/n)-1)/(2^(1/n)+1)

lim_(n->oo)(1^2+2^2+3^2+..........+n^2)/n^3

The value of lim_(x to pi//2){1^(sec^2x) +2^(sec^2x) +3^(sec^2x)+..........+n^(sec^(2)x)}^(cos^(2)x) is

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)

lim_(n->oo)2^(n-1)sin(a/2^n)

lim_(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

CENGAGE ENGLISH-DEFINITE INTEGRATION -CAE_TYPE
  1. Let f be a one to one continuous function such that f(2)=3 and f(5)=6....

    Text Solution

    |

  2. Evaluate: ("lim")(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(s...

    Text Solution

    |

  3. Lim(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 * sec^2 (4/n^2)+..............+...

    Text Solution

    |

  4. Evaluate ("lim")(nvecoo)sum(k=1)^nk/(n^2+k^2)

    Text Solution

    |

  5. Evaluate the following limit: lim(nto oo)(sum(r=1)^(n) sqrt(r)sum(r=...

    Text Solution

    |

  6. Evaluate the following limit: lim(nto oo)[(n!)/(n^(n))]^(1//n)

    Text Solution

    |

  7. P rov et h a t4lt=int1^3sqrt(3+x^2)lt=4sqrt(3)

    Text Solution

    |

  8. If I1=int0^1 2^x^2,I2=int0^1 2^x^3dx ,I3=int1^2^x^2dx ,I4=int1^2 2^x^3...

    Text Solution

    |

  9. IfII=int0^(pi//2)cos(sinx)dx ,I2=int0^(pi/2)sin(cosx)d ,a n dI3=int0^(...

    Text Solution

    |

  10. Prove that pi/6<int0^1(dx)/(sqrt(4-x^2-x^3))<pi/(4sqrt(2))

    Text Solution

    |

  11. Evaluate int(0)^(pi//2)|sinx-cosx|dx.

    Text Solution

    |

  12. Evaluate: int(-1)^4f(x)dx=4a n dint2^4(3-f(x))dx=7, then find the val...

    Text Solution

    |

  13. Evaluate int(1)^(5)sqrt(x-2)sqrt(x-1)dx.

    Text Solution

    |

  14. Evaluate: int(-1)^3(tan^(-1)(x/(x^2+1))+tan^(-1)((x^2+1)/x))dx

    Text Solution

    |

  15. Evaluate int(1)^(a)x.a^(-[log(e)x])dx,(agt1).Here [.] represents the g...

    Text Solution

    |

  16. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  17. Find the value of int(-1)^1[x^2+{x}]dx ,w h e r e[dot]a n d{dot} denot...

    Text Solution

    |

  18. Evaluate:- int0^(pi)[cot x]dx ,w h e r e[dot] denotes the greatest in...

    Text Solution

    |

  19. Prove that int0^x[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denotes ...

    Text Solution

    |

  20. Evaluate: int0^oo[2e^(-x)]dx ,w h e r e[x] represents greatest intege...

    Text Solution

    |